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1 Analysis of multiplicative noise

We set the output of skip connection with multiplicative noise is x' = x - &, where £ is sampled
from a certain distribution. Similar to Section 3.2 (main text), the expectation of the gradient
under multiplicative noise can be written as:

AL If(a) ,
B [Vay] = B [ 252000 ()]

9L If(a) .
Nay* 0. (x-E[x]).

(D

Again notice that taking % out of the expectation in Equation 1 requires Equation 4 (main
text) be satisfied. To keep tfle gradient unbiased, & should be close to 1. Thus, we use Gaussian
distribution ¥ ~ N (1,02).

2  Algorithm

Algorithm 1 NoisyDARTS-OFS (default and recommended)
1: Input: Architecture parameters ¢ ;, network weights w , noise’s standard variance o,
Epochygy.
2: while not reach E pochy,,, do
3:  Inject random Gaussian noise X into the skip connections’ output.
4:  Update weights w by V,, L, 4in(w, @)
5:  Update architecture parameters o by Vo L,y (w, @)
6
7:

: end while
Derive the final architecture according to learned «.

We give the NFA version of NoisyDARTS in Algorithm 2.
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Algorithm 2 NoisyDARTS-NFA
1: Input: Architecture parameters ¢; ;, network weights w , noise’s standard variance o,
Epochyax.
while not reach E pochy, do
Inject random Gaussian noise X into all candidate operations’ output.
Update weights w by V., L yain(w, @)
Update architecture parameters o by Vo L0 (w, @)
end while
: Derive the final architecture according to learned .

NN R RN

3 More Experiments and Details

3.1 More Ablation Studies

Gaussian noise vs. uniform noise  According to the analysis of Section 3.2 in the main
text, unbiased Gaussian noise is an appropriate choice that satisfies Equation 6. In the same
vein, unbiased uniform noise should be equally useful. We compare both types of noise in
terms of effectiveness in Table 1. Both have improved performance while Gaussian is slightly
better. This can be loosely explained. As the output feature x from each skip connection tends
to be Gaussian, i.e. x ~ N (i1, 67) (see Figure 1), a Gaussian noise  ~ N (0, 67) is preferred
since the additive result shares the similar statistics, i.e., x + % ~ N(u;, 02 + 7).

Noise Type | u o | Avg. Top-1 (%)
w/o Noise - - 97.00£0.14
Gaussian 00 | 0.1 97.21+£0.21
Uniform 0.0 | 0.1 97.12+0.15
Gaussian 00 | 02 97.35+£0.23
Uniform 0.0 | 0.2 97.15+0.23

Table 1: Experiments on different types of noise. Each search is run 8§ times
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Figure 1: The Gaussian-like distribution of output features on all skip edges in the original
DARTS.

Additive noise vs. multiplicative noise Apart from additive noise, we also blend the noise
(u = 1) by multiplying it with the output x of skip connections, which is approximately



AUTHOR(S): NOISYDARTS 3

effective as additive noise, see Table 2. In general, we also notice that searching with the
biased noise also outperforms DARTS. This could be empirically interpreted as that resolving
the aggregation of skip connections is more critical, while a slight deviation during the
optimization matters less.

Noise Mixture | u c Top-1 (%)
w/o Noise - - 97.00+0.14
Additive 0.0 | 0.1 | 97.21£0.21
Multiplicative | 1.0 | 0.1 | 97.15+0.23
Additive 0.0 | 0.2 | 97.35+0.23
Multiplicative | 1.0 | 0.2 | 97.22+0.23
Table 2: Experiments on different mixing operations. Each search is run 8 times

Remove Skip Connection from the search space Skip connections are a necessary compo-
nent but they are troublesome for DARTS. We remove this operation from the NAS-Bench-201
search space to study how well DARTS performs. Table 4 hints that DARTS can find relatively
competitive architectures (no longer suffering performance collapse), but not as good as those
found by state-of-the-art methods in Table 3 in the main text, for instance, it has a CIFAR-10
test accuracy 88.98% vs. NoisyDARTS’s 93.49%. We suggest that skip connections play an
indispensable role in neural architecture search and have to be carefully dealt with as we did
in NoisyDARTS.

Noise For All (NFA) vs. Only For Skip connection (OFS) Applying noise to skip connec-
tions is not an ad-hoc decision. In theory, we can interfere with the optimization by injecting
the noise to any operation. The underlying philosophy is that only those operations that can
work robustly against noises will win the race without unfair advantage. We compare the
settings of NFA, ES (noise for all but excluding skip), OFS in Table 6. This proves noise injec-
tion to skip connection is critical for a better searching performance. Note that this approach
also obtains much better result than DARTS. However, it requires a bit of trial-and-error to
control the o when there are many candidate operations. Therefore, if otherwise specified,
we use OFS as the default choice throughout the paper.
Searching GCN Architectures on ModelNet10.

3.2 Training Setting on Transferred Results on CIFAR-10

For transferred learning, we train the ImageNet-pretrained NoisyDARTS-A on CIFAR-10
for 200 epochs with a batch size of 256 and a learning rate of 0.05. We set the weight decay
to be 0.0, a dropout rate of 0.1 and a drop connect rate of 0.1. In addition, we also use
AutoAugment as [15].

Type ul o Acc (%) ul o Acc (%)
Gaussian [-1.0 /0.1 {96.92+0.36 ||-1.0|0.2|97.14+£0.15
Gaussian |-0.5|0.1[97.13+£0.20 ||-0.5]0.2|97.07+0.12
Gaussian| 0.0|0.1(97.21£0.21 || 0.0]/0.2|97.35+0.23
Gaussian| 0.5/0.1(97.02£0.21 || 0.5|0.2|97.16+£0.15
Gaussian| 1.0/0.1{96.89+£0.26 || 1.0|0.2|96.82+0.57
Table 3: Ablation on additive Gaussian noise on CIFAR-10 (each search is run 8 times)
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CIFAR-10 CIFAR-100 ImageNet16-120
valid test valid test valid test
DARTS w/ skip 39.77+£0.00 | 54.30+0.00 15.03+0.00 15.61£0.00 16.43+0.00 16.32+0.00
DARTS w/o skip 85.67+1.30 88.98+0.85 63.17+£1.00 62.82+1.74 | 33.74+2.69 33.29+2.66
NoisyDARTS 90.26+£0.22 | 93.49+0.25 | 71.36+0.21 71.55+0.51 42.47+0.00 | 42.34+0.06

Table 4: Removing skip connection from search space on NAS-Bench-201.

Setting

Backbones Params|Acc |AP |APsg|AP75|APg|APy|APL
M) (%) (%) |(%) (%) |(%) |(%) |(%)
MobileNetV2 (3.4 72.0|28.3]46.7 |29.3 {14.8|30.7 |38.1
SingPath NAS (4.3 75.0|130.7]49.8 |32.2 (15.4|33.9 |41.6
MobileNetV3 |5.4 75.2129.9]49.3 (30.8 |14.9|33.3 |41.1
MnasNet-A2 4.8 75.6/30.5]50.2 |32.0 {16.6|34.1 |41.1
SCARLET-A |6.7 76.9|31.4/51.2 |33.0 [16.3|35.1 |41.8
MixNet-M 5.0 77.0131.3]51.7 (32.4 |17.0/35.0 |41.9
FairNAS-A 5.9 77.5|32.4/52.4 |33.9 (17.2|36.3 |43.2
NoisyDARTS-A|5.5 77.933.1/53.4 (34.8 |18.5|36.6 |44.4
Table 5: COCO Object detection of various drop-in backbones.

3.3 Training Results on CIFAR-100

We show NoisyDARTS models searched in the DARTS search space and trained on CIFAR-
100 in Table 8. We set the initial channel as 36 and the number of layers as 20.

3.4 Training Settings on COCO Object Detection

We use the MMDetection tool box since it provides a good implementation for various
detection algorithms [1]. Following the same training setting as [10], all models in Table 5
are trained and evaluated on the COCO dataset for 12 epochs. The learning rate is initialized
as 0.01 and decayed by 0.1 x at epoch 8 and 11.

3.5 Training Settings on ImageNet

We split the original training set into two datasets with equal capacity to act as our training
and validation dataset. The original validation set is treated as the test set. We use the SGD
optimizer with a batch size of 768. The learning rate for the network weights is initialized as
0.045 and it decays to 0 within 30 epochs following the cosine decay strategy. Besides, we
utilize Adam optimizer (8; = 0.5, B, = 0.999) and a constant learning rate of 0.001.

3.6 Detailed Settings on NAS-Bench-201

For NAS-Bench-201 experiments, we adapt the code from [5]. We only use the first-order
DARTS optimization. We track the running statistics for batch normalization to be the same
as DARTS [12]. Each setting is run 3 times to obtain the average. We use a noise of ¢ = 0.8
regarding this particular search space.

3.7 Relations to Other Work

Comparison with PNI. PNI [7] uses parametric noise to boost adversarial training. In
contrast, we inject the fixed noise at the output of candidate operations and smooth the
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Method CIFAR-10 CIFAR-100 ImageNet-16
val test val test val test
DARTS-V1| 39.77+0.00 |54.3040.00| 15.03+0.00 | 15.61+0.00 {16.43+0.00|16.32+0.00
ES, 6=0.2 | 39.77+0.00 |54.30+0.00| 15.03+0.00 | 15.6140.00 |16.43+0.00{16.324+0.00
ES, 6=0.4 |49.274+16.46|59.8449.59|22.87+13.59(23.39+13.48(17.24+1.40|17.01+1.20
NFA 88.17+2.02 |91.60+1.74| 67.71+2.35 | 68.26+1.59 (41.91+£2.00|141.57+2.59
OFS 90.26+0.22 |93.49+0.25| 71.36:0.21 | 71.55+0.51 |42.4740.00(42.340.06

Table 6: Comparison of NoisyDARTS (NFA, ES, OFS) on NAS-Bench-201.

Methods Params (M)| OA (%)
SGAS (Cri. 1 avg.) 8.78 92.69+0.20
SGAS (Cri. 1 best) 8.63 92.87
NoisyDARTS (o = 0.3 avg.) 8.68 92.854+0.36
NoisyDARTS (¢ = 0.3 best) 8.33 93.11
NoisyDARTS (o = 0.4 avg.) 8.68 92.70+0.43
NoisyDARTS (o = 0.4 best) 8.93 93.23

Table 7: 3D classification on ModelNet40. OA: overall accuracy

loss landscape of the bi-level search to avoid collapse. Moreover, parametric noise leads to
collapse on NAS-Bench-201 (see learnable ¢ in Table 3).

3.8 Transferred Results

Transferred results on object detection. We further evaluate the transferability of our
searched models on the COCO objection task [9]. Particularly, we utilize a drop-in replace-
ment for the backbone based on Retina [10]. As shown in Table 5 (supplementary), our model
obtains the best transferability than other models under the mobile settings. Detailed setting
is provided in Section 3.4 (supplementary).

Transferring ImageNet models to CIFAR-10. We transferred our model NoisyDARTS-A
searched on ImageNet to CIFAR-10. Specifically, the transferred model NoisyDARTS-A-t
achieved 98.28% top-1 accuracy with only 447M FLOPS, as shown in Table 1. Training
details are listed in Section 3.2 (Supplementary).

3.9 Evolution of NoisyDARTS architectural parameters

We plot the evolution of architectural parameters during the NoisyDARTS optimization in
Figure 2. The injected noise is zero-mean Gaussian with ¢ = 0.2. As normal cells are
the main building blocks (18 out of 20) of the network, we see that the number of skip
connections is much reduced. Compared with [8] and [3], we don’t set any hard limits for
it. We also don’t compute expensive Hessian eigenspectrum [16] as a type of regularization
for skip connections. Neither do we use Scheduled DropPath [17] or fixed drop-path during
the searching. It confirms that by simply disturbing the gradient flow of skip connections,
the unfair advantage is much weakened so that the optimization is fairer to deliver better
performing models.
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Models Params Error Cost
™M) (%) GPU Days

ResNet [6] 1.7 22.10° -
AmoebaNet [14](3.1 18.93° 3150
PNAS [11] 3.2 19.53° 150
ENAS [13] 4.6 19.43° 0.45
DARTS [12] - 20.58+0.44* 0.4
GDAS [4] 34 18.38 0.2
P-DARTS [3] [3.6  17.49% 0.3
R-DARTS [16] |- 18.01+0.26 1.6
NoisyDARTS |4.7 16.28 0.4

Table 8: Comparison of searched models on CIFAR-100. °: Reported by [4], *: Reported by
[16], *:Rerun their code.

3.10 More discussions about Hessian Indicator in Reduced Search
Space

Specifically, when training these models from supposed early-stop points, we only obtain a
lower average performance 97.024+0.21. How about other search spaces? We further evaluate
the Hessian eigenvalue trajectories of our method in the reduced search space, which are
shown in Figure 5.

When we search with injected Gaussian noise, we still observe an obvious growth of
eigenvalues in both of two spaces. However, when being trained from scratch, the models
derived from the last epoch (without early-stopping or any regularization tricks) perform
much better than their proposed adaptive eigenvalue regularization method DARTS-ADA
[16]. Compared with their best effort L2 regularization [16] and another method SDARTS [2]
based on implicit regularization of Hessian norm, we also have better performance in S, and
comparable performance in S3 (see Table 2 in the main text). Notice we only use 3x fewer
searching cost. This reassures our observation that the Hessian norm [16] may not be an ideal
indicator of performance collapse, because it rejects good models by mistake, as illustrated in
Figure 6.

3.11 More Details on Reduced RobustDARTS Experiments

Like on CIFAR-10, we repeatedly find the Hessian eigenvalues are both growing when
searching with NoisyDARTS on CIFAR-100 and SVHN datasets (see Figure 7), but models
derived from these searching runs still outperform or are comparable to those from regularized
methods like RDARTS [16] and SDARTS [2] (see Table 2 in the main text). These results
again confirm that the eigenvalues are not necessarily a good indicator for finding better-
performing models.

4 NoisyDARTS architectures

4.1 Models searched on CIFAR-10 in the DARTS search space

We plot all the best models in different configurations of searching from Figure 8 to Figure 17.
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Figure 2: Evolution of architectural weights during the NoisyDARTS searching phase on
CIFAR-10. Skip connections in normal cells are largely suppressed.
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Figure 3: NoisyDARTS-A searched on ImageNet. Colors represent different stages.

4.2 Models searched on CIFAR-10 in the reduced search spaces of
RDARTS

We plot them in Figure 18 and Figure 19.

4.3 GCN Models searched on ModelNet10
They are depicted in Figure 20.



8 AUTHOR(S): NOISYDARTS
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Figure 4: Stacked plot of dominant operations during searching on ImageNet. The inferred
model of DARTS (left) obtains 66.4% accuracy on ImageNet, while NoisyDARTS (right)
obtains 76.1%.
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Figure 5: Evolution of maximal Hessian eigenvalue when searching with NoisyDARTS
on two reduced search spaces S> and S3 proposed by [16]. Compared with RDARTS, the
eigenvalues still have a trend of increasing. Notice that better models can be found 3 x faster
than RDARTS (they run four times to get the best model while we produce better ones at each
single run).

HNG

Figure 6: Exemplary illustration on the relation of the set of models. Set H means models
found with low Hessian norms. Set G are the models with better test accuracy. Robust-
DARTS’s Hessian norm criterion [16] tends to reject a part of good models, e.g. blue models
found by NoisyDARTS that are not in H N G.
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Test acc. (%) Params (M) A%
Space o seed seed seed
1 2 3 1 2 3 1 2 3

0.6 | 9743 | 97.32 | 9746 359 | 3.26 | 3.26 0.260 | 0.349 | 0.309
S> 0.8 | 97.30 | 97.39 | 97.37 3.62 | 3.62 | 3.62 0.133 | 0.270 | 0.429
1.0 | 9735 | 97.34 | 97.25 434 | 398 | 3.98 0.119 | 0.171 | 0.295
0.6 | 97.32 | 9747 | 97.28 3.62 | 398 | 3.62 0.345 | 0.418 | 0.290
S3 0.8 | 9732 | 97.24 | 97.27 398 | 3.62 | 3.26 0.393 | 0.327 | 0.336
1.0 | 9727 | 9741 | 97.34 || 434 | 398 | 3.98 0.289 | 0.341 | 0.379

Table 9: Test accuracy and the maximum Hessian eigenvalue (in the final searching epoch) of
NoisyDARTS models searched with different ¢ in the reduced search spaces of RobustDARTS
on CIFAR-10. Notice here we train models in S, with the same settings as in S3. It’s interesting
to see that A% = 0.418 in S3 is the best model with 97.47% top-1 accuracy. However, such

max
similar value in [16] indicates a failure (94.70%) under the same setting
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Figure 7: Evolution of maximal Hessian eigenvalue when searching with NoisyDARTS on
CIFAR-100 and SVHN, in two reduced search spaces S, and S3 proposed by [16].
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Figure 8: NoisyDARTS-a cells searched on CIFAR-10.
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(a) Normal cell (b) Reduction cell

Figure 9: NoisyDARTS-b cells searched on CIFAR-10 with additive Gaussian noise, i = 0,
o=0.1.
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Figure 10: NoisyDARTS-c cells searched on CIFAR-10 with additive uniform noise, i = 0,
o=0.2.

(a) Normal cell (b) Reduction cell

Figure 11: NoisyDARTS-d cells searched on CIFAR-10 with additive uniform noise, y = 0,
o=0.1.

(a) Normal cell (b) Reduction cell

Figure 12: NoisyDARTS-e cells searched on CIFAR-10 with multiplicative Gaussian noise,
u=0,0=0.2.
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Figure 13: NoisyDARTS-f cells searched on CIFAR-10 with multiplicative Gaussian noise,
u=0,0=0.1.
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Figure 14: NoisyDARTS-g cells searched on CIFAR-10 with additive Gaussian noise, (t =0.5,
c=0.2.

- sep3 dil5
sepd dils w
diis > c{k}
o_{k2} | Skip —

(a) Normal cell (b) Reduction cell

Figure 15: NoisyDARTS-h cells searched on CIFAR-10 with additive Gaussian noise, it = 1.0,
o=0.2.
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Figure 16: NoisyDARTS-i cells searched on CIFAR-10 with additive Gaussian noise, i = 0.5,
o=0.1.
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Figure 17: NoisyDARTS-j cells searched on CIFAR-10 with additive Gaussian noise, i = 1.0,
c=0.1.
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Figure 18: NoisyDARTS cells searched on CIFAR-10 with additive Gaussian noise u = 0,
o = 0.6, in S» of RobustDARTS.
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Figure 19: NoisyDARTS cells searched on CIFAR-10 with additive Gaussian noise i =0,
o = 0.6, in S3 of RobustDARTS.

i
S
A
edge_conv
(a) 0=0.2 (b) 6=0.3 o o_os

Figure 20: NoisyDARTS GCN cells searched on ModelNet-10 with additive Gaussian noise
u=0.
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