
LI ET AL.: SELF-VALIDATION: EARLY STOPPING FOR SIDGPS 15

A Additional experimental details
In this section, we provide experimental details omitted in the main body of the paper.

• Noise settings. We simulate 4 different types of noise and 3 intensity levels for each
noise type, as detailed below. The generation algorithms follow those of ImageNet-
C [15] 8.

– Gaussian noise: 0 mean additive Gaussian noise with variance 0.12, 0.18, and
0.26 for low, medium, and high noise levels, respectively;

– Impulse noise: i.e., salt-and-pepper noise, replacing each pixel with probability
p ∈ [0,1] into white or black pixel with half chance each. Low, medium, and
high noise levels correspond to p = 0.3,0.5,0.7, respectively;

– Shot noise: i.e., pixel-wise independent Poisson noise. For each pixel x ∈ [0,1],
the noisy pixel is Poisson distributed with rate λx, where λ is 25,12,5 for low,
medium, and high noise levels, respectively.

– Speckle noise: for each pixel x ∈ [0,1], the noisy pixel is x(1+ ε), where ε is
0-mean Gaussian with a variance level 0.20, 0.35, 0.45 for low, medium, and
high noise levels, respectively.

• Network architecture. Our AE is based on deep CNNs. The exact architecture is
depicted in Table 5.

B Additional experimental results

B.1 Image denoising
Besides DIP, we also verify our methods on DD. As we alluded to in Section 1, although
the original DD paper proposes underparameterization as a strategy to tame overfitting, in
practice it is tricky to implement and underparameterization can produce inferior results,
see, e.g., Fig. 1 (right). Thus, people (including the DD authors in their later papers, e.g.,
[14]) tend to still use overparametrized DD. Empirically, overparametrized DDs behave very
similarly to DIPs. Since in Section 3 we have validated our detection method extensively on
DIP with 4 noise types of both low and high noise levels, here we only focus on Gaussian
noise with medium noise level. Here, we set all the network width as 512, which is typically
used in practice. The learning rate is set to 0.001 here for good numerical stability. Other
experimental settings are identical to those of DIP in Section 3.

The denoising results are summarized in Fig. 8. One can observe that in most cases,
the detection gap is ≤ 1 in terms of ES-PG, and ≤ 0.1 in terms of ES-SG. However, if we
run DD without ES, the overfitting issue is dreadful: most of BASELINE-PGs are ≥ 6 and
BASELINE-SGs are≥ 0.4. These denoising results reaffirm the effectiveness and generality
of our method.

Moreover, Fig. 9 visualizes the reconstruction results of both DIP+AE and DOP. Fig. 9
(left) shows that both DIP+AE and DOP attain similar performance in terms of PSNR while
DIP+AE requires far fewer iterations and stops very early. Fig. 9 (right) confirms that vi-
sually they also lead to similar reconstruction qualities, as there is almost no perceivable
difference.

8https://github.com/hendrycks/robustness
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Table 5: The network architecture of AE.

Nets Layers Parameters

E
nc

od
er

ne
t

Conv2d 1 (3, 32, 3, 2, 1, False)

Batch norm, ReLU N/A

Conv2d (32, 64, 3, 2, 1, False)

Batch norm, ReLU N/A

Conv2d (64, 128, 3, 2, 1, False)

Batch norm, ReLU N/A

Conv2d (128, 128, 3, 2, 1, False)

Batch norm, ReLU N/A

Conv2d (128, 128, 3, 2, 1, False)

Batch norm, ReLU N/A

Conv2d (128, 128, 3, 2, 1, False)

Batch norm, ReLU N/A

Conv2d (128, 1, 3, 2, 1, False)

Batch norm, ReLU N/A

L
in

ea
rn

et
3 Linear 2 (16, 16, False)

Linear (16, 16, False)

Linear (16, 16, False)

Linear (16, 16, False)

D
ec

od
er

ne
t3

Upsample bilinear

Conv2d (1, 128, 3, 1, 1, False)

Batch norm, ReLU N/A

Upsample bilinear

Conv2d (128, 128, 3, 1, 1, False)

Batch norm, ReLU N/A

Upsample bilinear

Conv2d (128, 128, 3, 1, 1, False)

Batch norm, ReLU N/A

Upsample bilinear

Conv2d (128, 128, 3, 1, 1, False)

Batch norm, ReLU N/A

Upsample bilinear

Conv2d (128, 64, 3, 1, 1, False)

Batch norm, ReLU N/A

Upsample bilinear

Conv2d (64, 32, 3, 1, 1, False)

Batch norm, ReLU N/A

Upsample bilinear

Conv2d (32, 3, 3, 1, 1, False)

Batch norm, Sigmoid N/A

1 The parameters for Conv2d layers: (in_channels, out_channels, kernel_size, stride,
padding, bias).

2 The parameters for Linear layers: (in_features, out_features, bias).
3 Tensors are reshaped properly to suit the input dimensions.
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Figure 8: DD+AE for image denoising. (left) The performance measured in PGs. (right)
The performance measured in SGs.

Figure 9: DIP+AE vs DOP. (left) The solid lines and dash lines respectively show the restora-
tion performance for DOP and DIP+AE. (right) Visualizations for Kodak2 (first row) and
Kodak3 (second row).

B.2 MRI reconstruction

Here we provide the results for the complete set of random MRI samples that we experiment
with. For the notations, ES indicates the reconstruction quality detected by our method,
Peak denotes the peak quality that DD can achieve, and Overfitting is the final reconstruction
quality without ES. As can be seen from Table 6, for all experimental samples, ES and Peak

Table 6: The experimental results of MRI reconstruction.

Sample 1 Sample 2 Sample 4 Sample 6 Sample 9 Sample 10 Sample 16

PS
N

R
↑ ES 29.837 (0.176) 30.077 (0.231) 27.419 (0.250) 28.799 (0.111) 33.395 (0.158) 27.907 (0.124) 28.602 (0.217)

Peak 31.792 (0.295) 31.700 (0.185) 28.465 (0.282) 29.855 (0.081) 34.444 (0.265) 28.816 (0.107) 30.494 (0.381)

Overfitting 27.182 (0.379) 26.710 (0.449) 23.934 (0.072) 25.631 (0.191) 31.053 (0.061) 25.545 (0.182) 24.806 (0.232)

SS
IM
↑ ES 0.602 (0.002) 0.609 (0.000) 0.611 (0.003) 0.612 (0.005) 0.669 (0.002) 0.620 (0.008) 0.646 (0.005)

Peak 0.642 (0.006) 0.643 (0.004) 0.658 (0.003) 0.637 (0.014) 0.689 (0.008) 0.644 (0.004) 0.671 (0.003)

Overfitting 0.562 (0.002) 0.571 (0.002) 0.568 (0.005) 0.507 (0.012) 0.591 (0.009) 0.554 (0.004) 0.553 (0.005)

yield close performance in terms of both PSNR and SSIM, which indicates that our method
can reliably detect the near-peak performance. On the other hand, the performance (both
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PSNR and SSIM) of ES is uniformly better than that of overfitting, often by a considerable
margin, further confirming the effectiveness of our method.

B.3 Image inpainting

Image inpainting is another common IR task that SIDGPs have excelled in and hence pop-
ularly evaluated on; see, e.g., the DIP paper [41]. In this task, a clean image x0 is contami-
nated by additive Gaussian noise ε , and then only partially observed to yield the observation
y = (x0+ε)�m, where m∈ {0,1}H×W is a binary mask and� denotes the Hadamard point-
wise product. Here both y and m are known, and the goal is to reconstruct x0. We consider
the natural formulation

E(x) = ‖(x− y)�m‖2
2. (4)

We parametrize x using the DIP model. The mask m is generated according to an iid
Bernoulli model, with a rate of 50%, i.e., 50% of pixels not observed in expectation. The
noise ε is set to the medium level.

We also compare the performance of our method (DIP+AE) with the two competing
methods: DIP+TV [36, 37] and SGLD [6]. To ensure convergence, we run 60K and 200K
iterations for DIP+TV and SGLD, respectively, and report their final results. We repeat all
experiments 3 times and obtain the mean and standard deviation for each instance.

Table 7 summarizes the results. Our method significantly outperforms the other two
in terms of both PSNR and SSIM. It should be noted that here we test a medium noise
level, rather than the very low noise levels experimented with in the DIP+TV and SGLD
papers. Although in their original papers overfitting seems to be gone, here we see a strike-
back with a different noise level. So the two competing methods are at best sensitive to
hyperparameters, which are tricky to set.

Table 7: DIP+AE, DIP+TA, and SGLD for image inpainting. The best PSNRs are colored
as red; the best SSIMs are colored as blue.

PSNR ↑ SSIM ↑

DIP+AE DIP+TV SGLD DIP+AE DIP+TV SGLD

Barbara 21.878 (0.101) 17.790 (0.024) 15.326 (0.062) 0.522 (0.010) 0.259 (0.000) 0.259 (0.003)

Boat 23.268 (0.445) 18.071 (0.040) 15.211 (0.020) 0.534 (0.010) 0.259 (0.001) 0.227 (0.001)

House 28.883 (0.300) 18.362 (0.022) 15.566 (0.059) 0.767 (0.025) 0.157 (0.000) 0.171 (0.002)

Lena 25.052 (0.246) 18.264 (0.040) 15.481 (0.084) 0.644 (0.004) 0.218 (0.001) 0.204 (0.003)

Peppers 26.251 (0.187) 18.400 (0.022) 15.610 (0.036) 0.738 (0.016) 0.203 (0.000) 0.199 (0.001)

C.man 26.194 (0.423) 18.571 (0.049) 15.861 (0.031) 0.732 (0.009) 0.204 (0.001) 0.215 (0.001)

Couple 22.619 (0.154) 18.115 (0.007) 15.313 (0.062) 0.512 (0.011) 0.280 (0.000) 0.241 (0.002)

Finger 21.396 (0.119) 17.714 (0.024) 15.150 (0.027) 0.795 (0.003) 0.601 (0.000) 0.490 (0.001)

Hill 24.216 (0.254) 18.274 (0.017) 15.514 (0.107) 0.518 (0.009) 0.242 (0.000) 0.214 (0.003)

Man 23.687 (0.302) 18.159 (0.022) 15.394 (0.109) 0.532 (0.007) 0.252 (0.001) 0.222 (0.004)

Montage 27.290 (0.282) 19.005 (0.022) 16.334 (0.017) 0.799 (0.007) 0.193 (0.000) 0.221 (0.001)
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B.4 Performance on clean images
For SIDGPs, when there is no noise, the target clean image is a global optimizer to Eq. (2).

So there is no overfitting issue in these scenarios, and ES is not strictly necessary. But, in
practice, one does not know if noise is present apriori, and finite termination has to be made.
In this section, we experiment with “denoising” clean images with DIP. The setup is exactly
as that of our typical denoising, except that here we do not report the PSNR gap, as whenever
one makes a stop after finite iterations, the theoretical PNSR gap is infinity. We report the
absolute PSNR detected by our method instead; for most applications, PNSR greater than 30
is good enough for practical purposes.

The AE error curve tends to fluctuate when the quality is already high. To improve
the detection performance, we find that comparing running average to determine ES points
performs better than the stopping criterion described in Algorithm 1. We use this slightly
modified version here; we leave reconciling the two versions as future work—we suspect
that this modified version will likely improve our previous detection performance.

Table 8 shows the preliminary results. Except for the challenging case Baboon, the
PSNR scores are near 30 or above. So our method is performing reasonable detection. We
suspect using more advanced smoothing techniques such that Gaussian smoothing can sup-
press the fluctuation better and hence lead to better performance; we leave this as future
work.

Table 8: Performance of DIP+AE on denoising clean images.
PSNR ↑ SSIM ↑

House 36.569 0.921

Peppers 30.407 0.797

Lena 31.927 0.857

Baboon 20.186 0.423

F16 33.065 0.911

Kodak1 29.243 0.852

Kodak2 31.064 0.826

Kodak3 30.155 0.861

Kodak12 31.757 0.851

B.5 Bell-shape examples under different learning rate
As we shown in Table 4, our ES detection method is stable in terms of different learning rates
of DIP. Here we further demonstrate that the bell-shape of PSNR curve of DIP is holds under
different learning rates. We randomly select two images—F16 and Peppers—and visualize
their PSNR curves under different learning rates {0.01, 0.001, 0.0001} in Fig. 10. We can
observe that different rates would perturb the curves but would not distort the overall bell
shape.

B.6 Analysis of failure mode
To qualitatively understand the failing cases, we select 3 positive images that enjoy consistent
good detection and 3 negative images that see consistent failure, and visualize their Fourier
spectra in Figs. 11 and 12. For better visualization, we take the x 7→ log(1+ x) transform
of the Fourier magnitudes, as is commonly done in image processing. Visually, the positive
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Table 9: The performance gaps of BRISQUE [23], NIQE [24], NIMA [38], and DIP+AE on
shot and speckle noises. For NIMA, we report both technical quality assessment (the number
before “/”) and aesthetic assessment (the number after “/”). The best PSNR gaps are colored
as red; the best SSIM gaps are colored as blue.

Shot noise Speckle noise

Gap in PSNR ↓ Gap in SSIM ↓ Gap in PSNR ↓ Gap in SSIM ↓

BRISQUE NIQE NIMA DIP+AE BRISQUE NIQE NIMA DIP+AE BRISQUE NIQE NIMA DIP+AE BRISQUE NIQE NIMA DIP+AE

House 6.713 8.629 10.873/0.662 0.294 0.389 0.491 0.598/0.024 0.002 9.848 8.970 12.879/1.394 1.847 0.457 0.424 0.591/0.027 0.010

Peppers 5.538 5.975 1.863/6.013 0.417 0.267 0.289 0.128/0.295 0.018 6.414 6.085 8.987/4.861 0.311 0.233 0.227 0.316/0.193 0.011

Lena 7.976 6.191 9.697/1.545 1.281 0.448 0.375 0.516/0.075 0.020 8.797 5.133 9.352/0.912 0.445 0.402 0.240 0.436/0.039 0.013

Baboon 0.508 0.562 2.767/3.061 1.920 0.026 0.009 0.391/0.404 0.284 0.387 1.507 1.178/2.063 2.318 0.027 0.053 0.144/0.231 0.314

F16 5.329 8.448 0.938/6.404 1.016 0.403 0.555 0.011/0.168 0.013 6.760 7.136 0.418/7.757 0.418 0.488 0.498 0.001/0.229 0.021

Kodak1 3.099 3.741 3.287/5.387 0.953 0.086 0.118 0.321/0.485 0.059 1.363 4.332 3.215/6.871 0.719 0.013 0.106 0.258/0.556 0.056

Kodak2 15.693 9.055 10.208/1.071 0.154 0.433 0.269 0.435/0.025 0.006 9.755 7.921 8.169/0.634 0.340 0.272 0.177 0.158/0.013 0.013

Kodak3 8.429 8.546 2.501/21.796 0.895 0.429 0.427 0.092/0.619 0.006 6.484 6.509 13.457/13.130 1.183 0.236 0.239 0.584/0.263 0.016

Kodak12 6.009 8.941 6.746/20.054 2.118 0.401 0.490 0.422/0.704 0.021 8.545 8.204 5.398/0.703 0.562 0.459 0.450 0.343/0.011 0.010

Figure 10: The PSNR curves of DIP under different learning rates. (left) the PSNR curves
for F16; (right) the PSNR curves for Peppers.

examples can be well characterized as being piecewise smooth, and the negative ones invari-
ably contain fine details that correspond to high frequency components. Indeed, the positive
spectra are concentrated in the low-frequency bands, whereas the negative spectra are much
more scattered into high-frequency bands. We leave a more quantitative analysis of this as
future work.

B.7 ES criterion based on other principles?
During the peer review, one reviewer kindly pointed to us the possibility of formulating ES
criteria based on the whiteness or discrepancy principles in image denoising [1, 19]. In this
section, we briefly discuss the possibility of implementing them. We want to quickly remind
that we target practical denoising, and so assume very little knowledge about noise types,
levels, or whatsoever. Particularly, the noise level σ2 is unknown to us and possibly also
hard to estimate due to the generality we strive for. Also, to avoid confusion, we will switch
our notations slightly here.

Let XXX ∈ Rn×n be the target image, and YYY = f (XXX)+WWW be the noisy measurement, where
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Figure 11: Positive images and their spectra.

Figure 12: Negative images and their spectra.

WWW ∈ Rn×n is white noise with variance level σ2 <+∞, i.e.

• Ewi j = 0 and Ew2
i j = σ2 ∀ i, j;

• any pair of distinct elements in WWW are uncorrelated: for two different (in location)
elements w,w′ of WWW , E [(w−Ew)(w′−Ew′)] = 0 =⇒ E [ww′] = 0 (the implication
uses the 1st property).

The 2nd property has an interesting implication:

E [WWW ?WWW ] = n2
σ

2
δn×n =

[
n2σ2 000ᵀn−1
000n−1 000(n−1)×(n−1)

]
, (5)
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where ? denotes the 2D cross-correlation (for convenience, we assume the circular version),
and δn×n is the 2D delta function (we assume the top-left corner corresponds to no-shift
alignment). Denote our estimated image as X̂XX . If we have perfect recovery, then

YYY − f
(

X̂XX
)
= YYY − f (XXX) =WWW , (6)

and so

E
[(

YYY − f
(

X̂XX
))

?
(

YYY − f
(

X̂XX
))]

= E [WWW ?WWW ] = n2
σ

2
δn×n. (7)

This is the whiteness principle in [19]9: in particular, except for the top-left corner, all other
elements should be zero.

In practice, we are not able to take the expectation as we only observe one realization.
But note that except for the perfectly aligned case which produces n2σ2, each element of
1
n2 WWW ?WWW can be approximated byN

(
0, σ4

n2

)
due to central limit theorem when n2 is large—

this is valid for images. So typical element of WWW ?WWW should lie in the range

[−cnσ
2,cnσ

2], (8)

where c > 1 is a large enough constant, say 5.
This is explicitly used as a constraint in [19] to improve image restoration quality. If the

variance level σ2 is known, we may be able to use distance to this set as a measure of image
quality. However, for our applications, we do not assume known σ2, and also the constant c
chosen can impact the result also.

A more reasonable metric for us would be the quantity

‖(WWW ?WWW )−0‖, (9)

i.e., the norm of the WWW ?WWW with the top-left corner removed, which ideally should be as
sufficiently small. To be more explicit,∥∥∥((YYY − f

(
X̂XX
))

?
(

YYY − f
(

X̂XX
)))

−0

∥∥∥. (10)

But obviously the minimum is achieved when we overfit the noisy image YYY .
The discrepancy principle (or local constraint) in [1] is a refinement to the obvious con-

straint

1
n2

∥∥∥ f
(

X̂XX
)
−YYY

∥∥∥2

F
≤ σ

2 (11)

for a good estimate X̂XX to satisfy. This only enforces that globally the noise level of the
residual matches the known noise level, but does not ensure uniformly. To ensure the latter,
a natural idea is to enforce the noise level consistently everywhere locally:

G∗
(

f
(

X̂XX
)
−YYY

)2

i, j
≤ σ

2 ∀ i, j. (12)

9Our presentation here does not use the discrete-time stochastic process language as in the original paper—which
seems overly technical than necessary, but they are equivalent.
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Here, G is a Gaussian filter of appropriate size, and the left side of the equality is the (Gaus-
sian) weighted mean variance around the pixel location (i, j).

Similar to the situation for the whiteness principle, if the variance level σ2 is known, we
may also use the distance to this set as a metric to measure the reconstruction quality. When
σ2 is unknown, it is unclear how to make easy modification to do this, unlike the case of the
whiteness principle above.


