
Tensor Component Analysis for Interpreting the Latent

Space of GANs
Supplementary Material

1 Introduction

In this document, we present additional material to support the main paper. Firstly,
we provide illustrations and derivations in Section 2, aimed at clarifying and providing
intuition into some of the operations performed in the main paper. Lastly, in Section 3 we
provide experimental results designed to supplement and further validate our proposed
method.

2 Illustrations & intuition

2.1 Mode-n edits

In the main paper, we form an ‘edit tensor’ Z ′ ∈ RC×H×W which is a combination of the
basis vectors for each of the three modes of the generator’s activations. We show how one
can make edits that, broadly speaking, correspond to style or geometry by adding the
mode-n basis vectors to all mode-n fibers of this edit tensor, using the 1st order terms
Z ′ = Sn ×n U(n).

To see how these 1st order terms work to select the desired linear combinations of
the N basis vectors from the columns of U(n) and sum them along each of the output’s
mode-n fibers, we can inspect Z ′’s mode-n unfolding. We know from the definition of the
mode-n (matrix) product [4] that we can write this term equivalently as

Z ′ = Sn ×n U(n) ⇔ Z′(n) = U(n)Sn(n). (1)

Next, recall that the definition of the mode-n unfolding of a tensor X is a rearranging
of its mode-n fibers into the columns of a matrix X(n) [4]. With this in mind, we can
inspect the right-hand-side of Eq. (1), writing it as

Z′(n) = U(n)Sn(n) (2)

=

 | |
u
(n)
1 · · · u

(n)
N

| |

︸ ︷︷ ︸

U(n)

 | α11
> |

...

| αN1
> |

︸ ︷︷ ︸

Sn(n)

(3)

=
∑
i

u
(n)
i ◦ αi1, (4)

which shows that each of the mode-n fibers of Z ′ are linear combinations of the mode-n
basis vectors, as intended.

2.2 Multilinear mixing

We also show we can model the interactions of the basis vectors between the modes of
the tensor. We first recall the following useful result with the Kronecker product [3]:

1

Proposition 1. Let Y = X ×1 U(1) ×2 U(2) ×3 · · · ×N U(N), then

vec (Y) =
(
U(N) ⊗U(N−1) ⊗ · · · ⊗U(1)

)
vec (X) . (5)

The 3rd order term Z ′ = SCHW ×1 U(C) ×2 U(H) ×3 U(W) can then be understood
most easily by appealing to Proposition 1 and writing it in terms of its vectorisation as

vec (Z ′) =
(
U(W) ⊗U(H) ⊗U(C)

)
vec (SCHW) (6)

=
(
U(W) ⊗U(H) ⊗U(C)

)
α1

α2

...
αC·H·W

︸ ︷︷ ︸
vec(SCHW)

. (7)

That is, considering the operation in its vectorised form, the ‘selector tensor’ SCHW can
be interpreted as simply taking a linear combination of the columns of the matrix formed
from the interactions of the basis vectors of the three factor matrices. For example,
vec (SCHW) (1) := α1 weights the interactions of the first basis vectors of all three of the

bases u
(C)
1 ,u

(H)
1 ,u

(W)
1 .

2.3 Regressing the edit tensor to the latent code

Finally, we illustrate how these terms are summed to form the edit tensor graphically in
Fig. 1. The ‘generalised inner product’ then maps this back to the latent code z′ ∈ Rd.

Figure 1: An overview of how we form the edit tensor and compute its latent code:
We first form the edit tensor Z ′, the 1st-order terms being demonstrated graphically
here. Then, we take the generalised inner product with weight tensor W yielding z′: the
corresponding direction in the original latent space.

2.4 Computing the bases in a pre-trained GAN

To compute the three bases U(C),U(H),U(W) we follow [1], where Lu et al. show that,
if we retain each of the basis vectors (i.e., perform no dimensionality reduction), we can
compute these factor matrices in one-shot. Given a pre-trained GAN’s generator G, we
compute the bases following Algorithm 1.

Figure 2: Edits performed along the spatial and channel modes separately, in a variety of
generators and datasets. For these experiments, we use a low-rank Tucker decomposition
for the regression tensor.

Figure 3: Edits found in the third-order interactions of bases for StyleGAN (when we
directly edit the activation tensor).

Algorithm 1 Computing the (full rank) multilinear bases

1: procedure ComputeBases(G, i) . Pretrained generator G and target layer i
2: Z← Sample M times from standard normal
3: Z ← G[: i](Z) ∈ RM×C×H×W . Intermediate activations
4: for n = 1 : 3 do
5: Z̄(n) ← 1

M

∑M
m=1 Zm(n) . Mean mode-n unfoldings

6: U(n) ← Left-singular vectors of
∑M

m=1

(
Zm(n) − Z̄(n)

) (
Zm(n) − Z̄(n)

)>
7: end for
8: return U(1),U(2),U(3)

9: end procedure

3 Additional experimental results

3.1 Qualitative results

Here we provide additional qualitative results. We first show more mode-wise edits in
Fig. 2. In Fig. 3 we also perform ‘multilinear mixing’ on StyleGAN. For StyleGAN, we
find these multilinear directions are best realised when we additionally add the edit tensor
to the activation tensor directly–along with generating the corresponding latent code for
the AdaIN operations–and continue the forward pass from this edited tensor.

3.2 Experimental setup

Here we describe more thoroughly the experimental setup we use to produce our results
in the quantitative comparisons in the main paper, to ensure reproducibility. In general,
we walk along each direction by a manual amount for each direction of each baseline,
such that the total average mean change in predictions for each attribute is as close as
possible. E.g. we walk along the ‘blonde hair’ direction for all methods until the mean
change in this attribute is close to 0.5. The baselines we benchmark our proposed method
against are detailed below.

GANSpace For GANSpace [2], no official weights are provided for the CelebA-HQ
dataset for the ProgGAN generator. Therefore we manually implement this on top of the
author’s official code1, using a total of 1, 000, 000 samples to perform the decomposition.

SeFA For SeFA [5], we use the author’s official code and pre-trained weights2 to produce
the edited images, manually identifying the directions that most closely correspond to the
three attributes of interest. Concretely, we use indices 2,4,7 of the directions matrix for
the attributes ‘yaw’, ‘blond hair’, and ‘pitch’ respectively.

Unsupervised discovery For [6], the official weights provided are trained on a dif-
ferent ProgGAN model to the other baselines. For this reason, we generate and use the
predictions on a new ground-truth training set from this pre-trained model for this base-
line for fair comparison. Using the pre-trained weights, we use indices 5,12,49 of the
directions matrix for the attributes ‘blond hair’, ‘yaw’, and ‘pitch’ respectively.

Ours For our method, we use the indices 3,3,1 of the channel, height, and width bases
for the attributes ‘blond hair’, ‘pitch’, and ‘yaw’ directions respectively.

3.3 Ablation study: choice of rank for W
We briefly turn our focus to exploring the role of the regression tensor W. We find the
regularisation afforded by the choice of rank in the decomposition in regression tensor
W to play an important role in the kind of edits we can generate. For example, we
show in Fig. 4 the head-thinning multilinear direction using both a high- and low-rank
Tucker structure on the regression tensor. We find a high rank necessary to generate
the ‘multilinear mixing’ edits (that feature transformations very far from the true data
distribution). However for smooth, interpretable directions such as pitch and yaw, we find
a low-rank necessary–we find a high-rank can lead to artefacts for the first-order terms.
Our findings here suggest that the rank of the decomposition of the tensor regression
weight is a hyperparameter that one can tune depending on the types of edits they wish
to generate. In practice we regress these terms back to the latent code separately.

Figure 4: An example of a multilinear direction affecting the head width, generated using
both a high- (a) and low-rank (b) regression tensor.

1GANSpace codebase: https://github.com/harskish/ganspace
2Official SeFA weights: https://github.com/genforce/sefa/blob/master/latent_codes/pggan_

celebahq1024_latents.npy

https://github.com/harskish/ganspace
https://github.com/genforce/sefa/blob/master/latent_codes/pggan_celebahq1024_latents.npy
https://github.com/genforce/sefa/blob/master/latent_codes/pggan_celebahq1024_latents.npy

References

[1] Haiping Lu, K.N. Plataniotis, and A.N. Venetsanopoulos. “MPCA: Multilinear Prin-
cipal Component Analysis of Tensor Objects”. In: IEEE Trans. Neural Netw. 19
(2008), pp. 18–39.

[2] Erik Härkönen et al. “GANSpace: Discovering Interpretable GAN Controls”. In:
Proc. Adv. Neural Inform. Process. Syst. (NeurIPS). Vol. 33. 2020, pp. 9841–9850.

[3] Tamara G. Kolda. Multilinear Operators for Higher-order Decompositions. Tech. rep.
Sandia National Laboratories, 2006.

[4] Tamara G. Kolda and Brett W. Bader. “Tensor Decompositions and Applications”.
en. In: SIAM Review 51.3 (Aug. 2009), pp. 455–500.

[5] Yujun Shen and Bolei Zhou. “Closed-Form Factorization of Latent Semantics in
GANs”. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). 2021.

[6] Andrey Voynov and Artem Babenko. “Unsupervised discovery of interpretable di-
rections in the GAN latent space”. In: Proc. Int. Conf. Mach. Learn. (ICML). 2020,
pp. 9786–9796.

	Introduction
	Illustrations & intuition
	Mode-n edits
	Multilinear mixing
	Regressing the edit tensor to the latent code
	Computing the bases in a pre-trained GAN

	Additional experimental results
	Qualitative results
	Experimental setup
	Ablation study: choice of rank for W

