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1 Comparison to Prior Work
We compare our work against several prior works that attempt to reverse engineer RGB
images from features. Figure 1 compares our reverse-engineered image results compared to
that of d’Angelo et al. [3] and Weinzaepfel et al. [2]. Compared to the latter in Figure 1(e),
our result using SIFT shown in Figure 1(b) produces a qualitatively better reverse-engineered
image with more accurate color estimates. As shown in Figure 1(f), the work from d’Angelo
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(a) Original (b) Ours (SIFT) (c) Ours (FREAK) (d) Ours (SOSNet)

(e) Weinzaepfel et al. (SIFT) (f) d’Angelo et al. (Binary) (g) Dosovitskiy et al. (SIFT)

Figure 1: Top from left to right. Ground truth image and our reconstructions from SIFT,
FREAK, and SOSNet sparse feature maps. Bottom from left to right. Reconstructions by
prior work from binarized descriptors in [3], and SIFT features in [2].

et al. reconstructs image gradients only and is not comparable to our work. We also compare
our results to those by Dosovitskiy and Brox [5] in Figure 1(g). In contrast to our work,
Dosovitskiy and Brox use more keypoints and descriptors for their reconstruction using SIFT
descriptors; they use roughly 3000 keypoints to reconstruct this image while we use 1,000
or fewer in our experiments. Qualitatively the results are comparable.

The previous state of the art is recent work proposed by Pittaluga et al. [6] which also
uses convolutional neural networks to reverse-engineer images. Pittaluga et al. use additional
information such as depth and RGB at the keypoint location to supplement SIFT descriptors
as input to their reverse engineering model. Our work does not use depth nor RGB informa-
tion, and does not make use of a separate network for visibility estimation (as the VisibNet
from [7]). We also compare against FREAK and SOSNet descriptors while Pittaluga et al.
exclusively analyze SIFT descriptors.

The results show that even without the additional depth and RGB information from Pit-
taluga et al., our reconstructions produce more detail and more accurate color in average in
the cases of SIFT and SOSNet. In contrast, FREAK does not allow us to reconstruct the
color information as well and we see some color artifacts (e.g., see the clock image). Since
a practical reverse engineering attack for a relocalization service does not provide depth or
RGB information to the honest-but-curious adversary, our attack formulation aligns with the
real-world scenario. When using all input data assets (depth, SIFT, and RGB) Pittaluga et
al. achieve a maximum average SSIM of 0.631 on reconstructions and an average SSIM of
0.578 when using only SIFT descriptors (Table 1). In contrast, our reverse engineering at-
tack yields an average SSIM of 0.675 for reconstructions from SIFT features alone and thus
provides a new state of the art. We attribute the improvements to our architecture choice and
training procedure which we describe below.
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Inputs SSIM

Prior Work [7]
Depth Only 0.578
Depth+SIFT 0.597
Depth+SIFT+RGB 0.631

Ours
SIFT Only 0.675
FREAK Only 0.511
SOSNet Only 0.616

Table 1: Comparison of average SSIM values of the reverse engineered images from prior
work [7] and our work. Our work achieves better SSIM results for SIFT without using inputs
like depth or RGB.

2 Architecture Implementation Details
Our reverse engineering attack uses a deep convolutional generator-discriminator network
(see main paper). We provide the implementation details of our reverse engineering network,
including architecture, optimization, and training methodology in this section.

2.1 Generator
The generator follows a 2-dimensional U-Net [4] topology with 5 encoding and 5 decod-
ing layers. Specifically, the architecture of the encoder is conv64-conv128-conv256-conv512-
conv1024, where convN denotes a convolutional layer with N kernels of size 3× 3, stride of
1, and padding of 1. A bias is added to the output, followed by a BatchNorm-2D, and ReLU
operation. Between convolutions, there is a 2D MaxPool operation with kernel size and
stride both set to 2. The decoder architecture is upconv1024-upconv512-upconv256-upconv128-
upconv64 where upconvN denotes a convolutional layer with N kernels which is also upsam-
pled by a scale factor of 2. The kernels for these layers are also 3×3 in size and have a stride
and padding of both 1. The convolution is also followed by a BatchNorm-2D and ReLU
operation.

2.2 Discriminator
The discriminator used for adversarial training has the following architecture: Disc256-Disc128-
Disc64-Disc32-Disc16-Disc8-Disc4 where DiscN denotes a 2D-convolution with N kernels of
size 4×4, stride of 2, and padding of 1, followed by BatchNorm-2D and leaky ReLU with
negative slope of 0.2. Disc256 is not followed by a batch normalization and in Disc4 leaky
ReLU is replaced by a sigmoid operation.

2.3 Training Methodology and Optimization
The loss functions we use are described in Section 4.2 of our paper. Our losses together are
described as:

LG = Lmae +αLperc +βLbce , (1)

where, α = 1, and β = 0.1.
We detail how we use the L2 perceptual loss here. We utilize a VGG16 model pre-trained

on ImageNet [1]. The outputs of three ReLU layers are used: layers 2, 9, and 16. ϕi is used to
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denote the these layers. ϕ1 : RH×W×3 → RH/2×W/2×64, ϕ2 : RH/2×W/2×64 → RH/4×W/4×128,
and ϕ3 : RH/4×W/4×128 → RH/8×W/8×256. These outputs are used by the L2 perceptual loss
to train the network.

Both the generator and discriminator were trained using the Adam optimizer with β1 =
0.9 and β2 = 0.999 and ε = 1e−8. The learning rate for the generator is 0.001 and for the
discriminator is 0.0001. We train each of the SIFT, FREAK, and SOSNet networks for
400 epochs each. The first 250 epochs are run without the discriminator contributing to the
generator-discriminator combination network. The next 150 epochs are run with both the
generator and discriminator losses.
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