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1 Architecture and model training

Figure 1: The full architecture of the decoder as implemented in our experiments to invert a
ResNet-50 model taking the output of its deepest convolutional layer (conv5_block3). Up-
sampling is provided by transposed convolutional layers with stride 2. Kernel size was set to
[3,3] for all convolutional layers.

Our architecture is structured to invert the deepest latent representation of a ResNet-50
model. There is in principle some degree of freedom in the definition of latent representation
of a pre-trained model, and therefore on which layer to invert. Early convolutional layers
(in shallower locations along the network’s depth) would be simpler to invert because they
exhibit much richer spatial information (and thus would yield higher quality reconstructions).
However, these layers are further away from the feature vector that ultimately defines the
model’s perception of the input, and are therefore less useful for our objective. Moreover,
current CNN research is driven towards simpler “fully convolutional” setups rather than more
intricate ones (such as architectures with multiple fully connected layers at the end) due to
their higher versatility [4]. The result of this trend is that the last convolutional layer is one
of the deepest layers of the network, very close to the output, and yet still preserves spatial
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information needed for inversion. Indeed, in ResNet-50’s architecture, this layer is only
followed by avg_pool and the single fully connected predictions layers. For these reasons,
we chose to perform inversion starting from the deepest convolutional layer.

Another important design choice was that of avoiding any skip connections in the encoder-
decoder architecture, such as those found in U-net like architectures [6]. This follows a sim-
ilar reasoning; indeed, the aim is to allow the reconstruction to only gather information from
the last convolutional layer, so as to keep truthful to the deepest latent representation.

Moreover, in the ideation of our loss components, we have avoided natural image priors
(such as Total Variation norm). These normalization factors are employed in works such
as [5] to improve visual reconstruction quality, but impose structural biases that necessarily
drive reconstructions to be further from the actual network perception. A complete architec-
ture of our decoder model is shown in figure 1.

1.1 Adversarial training
Our experiments indicated that adversarial loss was not beneficial in our case, probably be-
cause of the large size ([7,7,2048]), sparsity, and non-normality of the latent space to be
reconstructed, which render it very different from noise vectors that are typically fed to
GANs. Regardless, we present an overview of the adversarial techniques that were exploited
during our work.

We follow the Wasserstein GAN formulation [1], with a critic model C : Rw,h,3 → R,
trained simultaneously with the decoder using the WGAN-GP losses and algorithms from
Gulrajani et al. [3]. Given an additional batch of input images X̂ = {x̂i} of size b, the adver-
sarial loss for the decoder will depend on the critic’s assessment of the reconstructed images:

LADVG
.
=− ∑

i=1...b
C(yi) (1)

Meanwhile the loss function used to train the critic makes use of the reconstructed images
for the first batch and the new batch of input images for the second:

LADVC
.
= λ (||∇YC(Y )||−1)2 + ∑

i=1...b
C(yi)−C(x̂i), (2)

where the first term is a gradient penalization that regularizes the critic by enforcing a Lips-
chitz constraint and aids in convergence.

1.2 Model selection
We have considered different terms in the loss function used to train the decoder. To find
the best training hyper-parameters, we perform grid search with different weights for LMSE ,
LSSIM , LADVG , and LDSIM . Since it is not possible to define a single metric for visual quality,
we tune these parameters by assessing the visual quality of the images produced. Indeed,
the only way to quantitatively assess the reconstruction quality was to resort to a survey
by multiple users, which we could only afford to perform on our final configuration. To
prevent to any extent possible any confirmation bias, however, our model selection process
was exclusively based on an image set that did not overlap with images shown in the survey.

We discover that when α3 is too high, reconstructions present high frequency patterns,
as also shown in [2]. When instead α1 is too high, reconstructions look blurry as is the case
for auto-encoders trained with MSE. If α2 is too high, reconstructions present a lot of high
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Figure 2: Example reconstructions from different models and manual visual quality com-
parison. We see how high frequency patterns appear in the reconstructions when α2 or α3
components are too large. Also, introducing GAN loss did not improve reconstruction qual-
ity. From the different reconstructions obtained with different hyper-parameters, we have
selected the most visually clear.

frequency artifacts as the SSIM component tries to mimic textures in the original image. We
have also found that gradients for the SSIM loss were not sufficiently steep when training
from scratch, but that performing a first training of the decoder only with MSE and then
proceeding with all components was greatly beneficial. Finally, as mentioned above, the
GAN term realized in LADVG was not beneficial to the model’s reconstruction quality and
was discarded.

Finally, we note that, despite our efforts, reconstruction quality is rather limited. This is
due to i) the nature of the latent space to be reconstructed, which is that of a model trained on
a different task than that of decoding, and ii) the constraints placed to enforce faithfulness to
the deepest latent representation (e.g. avoiding skip connections). Indeed, visual features are
not the subject of training for the modelM, thus, information needed for reconstruction may
be discarded in the process of learning features needed exclusively for classification. This is
not the case for models such as autoencoders, where the latent space is explicitly trained to
retain as many visual features as possible, so as to allow high-quality reconstructions.

2 Saliency maps
In the paper, we present an overview of how saliency maps are used to generate explanations
in the literature. In this section, we give a more detailed description and provide examples.

A saliency map is an image, likely of the same size of the input one, that highlights which
parts of the input image were most responsible for a particular output, revealing where the
model focuses attention and possibly showing mistakes the network made in the prediction.
The explanation is given either by superimposition or by masking. For the superimposition
case, the generated saliency map is added to the input image by means of color-mapping:
the explanation will show warmer (red) hues over regions the network deemed useful in
the decision, and colder (blue) hues where the features of the images were not taken into
consideration for the decision (as in Fig 3, center). For what regards masking, the original
image is blacked/whitened out based on the pixel-wise saliency values. This results in an
image that only shows the regions of the input that affected the model’s decision (as in Fig
3, right).
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Figure 3: Different ways of displaying a saliency map for an image. The class to be explained
is “cat”.
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3 Survey intro and tutorial
Both surveys present an introductory section aimed at ensuring that participants possessed a
baseline knowledge level regarding the images that they were going to see. Figure 4 shows
the introductory tutorial that was presented to the subjects of our survey. This section was
followed by a short example (Figure 5) to prepare users to the images they were required to
evaluate during the survey.

Figure 4: Tutorial page for the PV (left) and for the CAM (right) versions of the survey. This
is the first page seen by users of the survey.
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Figure 5: Example page for the PV (left) and for the CAM (right) versions of the survey.
This is the second page seen by users of the survey.



GIULIVI, CARMAN, BORACCHI: PERCEPTION VISUALIZATION 7

4 Survey questions
In this section, we present all the 30 questions that were posed to the participants of our
survey. For each, we show the images that were displayed in the question, the sample labels,
model prediction and explained class. We also show the options that the participants could
choose from and the performance of the respondents, organized by survey type (CAM/PV).
An example of the data presentation is given in Figure 6.

Figure 6: Overview of the data presentation. 1) The original sample, 2) The Grad-CAM ex-
planation, 3) The PV explanation, 4) Targets, model predictions, and explained class for the
specific input sample, 5) The possible answers that were given in the survey, 6) Performance
of respondents for the two surveys. Participants of the CAM version of the survey see images
1 and 2, while participants of the PV version of the survey see images 1 and 3. Information
4 and 6 is hidden from the participants.
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