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1 Introduction

In this supplementary material we provide:

» Additional corrosion image examples

» Corrosion experimental coating stack-up information and image naming schemes

* Examples of non-expert measurements

* Model architecture pipeline diagrams and hyper-parameters

* Augmentation method and parameter details

¢ Additional results and conclusions of pretrained models

¢ Additional Grad-CAM visualization results

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 Data Set
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Figure 1: More corrosion image examples.

Shown here in Supplementary Figure 1 are more sample images of scribe corrosion rat-
ings 5-9; 8 examples of each rating class are shown. Again, we highlight the variety in
appearance of panels for a single rating class; images have single or double scribes, various
panel background colors, different colors of corrosion, and corrosion that has not perforated
the topcoat. Furthermore, we re-emphasize the small differences apparent between cate-
gories upon simple visual inspection and highlight the necessity for precise measurements
of corrosion width to determine corrosion ratings. Finally, we see that in higher ratings, such
as 8 and 9, corrosion can be so thin that it is hard to visually see and requires magnifying
glasses to make precise measurements.

The data released in this work comes from standardized material science experiments for
the purpose of materials research. With that, there exists unique stack-up configurations to
each panel that we present. Present in the released data will include image names for each
image in the structure of: I#_Substrate_Profile_Pretreatment_Primer_Topcoat. Each of these
pieces of the stack-up are shown in Supplementary Figure 3. All proprietary product infor-
mation has been removed from these image names and replaced with generic terminology
provided by domain experts. We will release all 600 images upon acceptance following this
naming scheme for all our images. Included in the release will be a folder of all 600 images,
the data split into our 10 cross-validation folds and held-out test set for reproducibility of
results, and an excel sheet of all 600 image names with their corresponding scribe corrosion
rating.

In Supplementary Figure 3 we see an example of what a coating stack-up is for an image
panel. It contains substrate, profile, pretreatment, primer, and topcoat layers, applied in
that order. The substrate layer is the material being coated, the profile layer is the shaping,
smoothing and cleaning of the material, the pretreatment layer is applied to assist in primer
adhesion, the primer layer provides corrosion resistance, and the topcoat is the primary layer
at risk of contamination and is of the most focus for formulation efforts to enhance agent
resistance.

In Supplementary Figure 4 we see a full scribe rating table from the ASTM standard [5].
Millimeter and inch measurement ranges are shown for each of the 11 (0-10) scribe rating
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categories.

Topcoat

Primer

Substrate

Topcoat — Provides signature management, primary
layer at risk of contamination and focus of formulation
efforts to enhance agent resistance

Primer — Provides corrosion resistance, influential in
coating adhesion and weatherability

L

/

Substrate — Material being coated, many potential N
materials from metals to polymer composites; substrate
pretreatment process important for primer adhesion,
@ vital to corrosion resistance /

Figure 3: Experimental stack-up for corrosion testing.

3 Non-expert Study

In Supplementary Figure 2, we show examples of how corrosion is measured in the non-
expert study. Non-experts first segment the areas of corrosion and then 12 equally distributed
points are measured across the scribe and the conversion to mm length, and subsequently a
corrosion rating, is found using the pipeline and equations in the main paper.

In this non-expert study, we crop 12 or 6 square boxes along the scribe on each image. In
each box, we use computational tools to define its corrosion segmentation, shown as white
areas, and draw the intersection of the box diagonal line and the white area as the corrosion
pixel width of the box. We then average the width among all the boxes, convert to mm,
divide by 2, and assign a corrosion rating.



4 YIN ET AL.: CORROSION IMAGE DATA SET

Representative Mean Creepage From Scribe

Millimetres lnchgs e

(Approximate) Number
Zero 0 10
Over 010 0.5 0to Ves 9
Over 0.5t0 1.0 Ves t0 142 8
Over1.0t0 2.0 Va2 10 Vie 7
Over2.0t0 3.0 Yie 10 '8 6
Over3.0to 5.0 14 to 34s 5
Over5.0t0 7.0 %6 to Va4 4
Over 7.0 to 10.0 Vato % 3
Over 10.0 to 13.0 310 12 2
Over 13.0 to 16.0 %10 %4 1
Over 16.0 to more 5& to more 0

Figure 4: ASTM scribe corrosion rating table.

4 Model Architectures

In this work we use five primary model architectures: ResNet-18, ResNet-50 [1], DenseNet
[2], HRNet [6], and Pretext-Invariant Representation Learning (PIRL) [4]. Our experiment
pipelines for all experiments shown in Table 2 are demonstrated in Figures 5 and 6. In this
section we present our experiment pipelines, outline key model hyper-parameters, augmen-
tation methods used, and augmentation parameters searched and/or found. In Table 1 we
show all 9 augmentation methods used in our work, a description of what each method does
to an image, and the parameters and values for each parameter we search over; the bolded
values are the determined tuned values presented in the main paper.

As shown in Supplementary Figure 5, we train ResNet-18, ResNet-50, DenseNet, and
HRNet models from scratch on our corrosion data with (red) and without (blue) data aug-
mentation as well as fine-tuning pretrained ResNet-18 and ResNet-50 models with data aug-
mentation (green). In these experiments, for all models we use: momentum 0.9, cosine
learning rate scheduler with exponential warmup, SGD optimizer, and train for 2000 epochs.
For ResNet-18 and ResNet-50, we use a learning rate of 0.003 and weight decay of 0.05. For
DenseNet we use a learning rate of 0.0004 and weight decay of 0.05. For HRNet we use a
learning rate of 0.003 and weight decay of 0.0004. For ResNet-18 we use a batch size of 64.
For ResNet-50, DenseNet, and HRNet we use a batch size of 32.

As shown in Supplementary Figure 6, we not only trained ResNet with the recent self-
supervised learning approach, Pretext Invariant Representation Learning (PIRL), from scratch
but also applied a pretrained ResNet with the approach using ImageNet. The pretrained
learned representation was transferred to our downstream corrosion assessment task for pre-
dicting expert corrosion ratings.

In part (a) of Supplementary Figure 6, PIRL trained from scratch, our final results come
from the following tuned hyper-parameters: no data augmentation, learning rate 0.03, 2000
epochs, batch size 64. For its corresponding downstream task, we tuned the linear or mlp
layer (added a relu activation layer) using the following tuned hyper-parameters: data aug-
mentation, learning rate 0.5, 2000 epochs, batch size 64, cosine learning rate decay. In the
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Figure 5: Experiment pipelines for ResNet-18 and ResNet-50 PyTorch-pretrained (Ima-
geNet) and ResNet-18, ResNet-50, DenseNet, and HRNet (denoted together as "CNN")
trained from scratch results. Blue: no augmentation, trained from scratch pipeline. Red:
with augmentations, trained from scratch pipeline. Green: pretrained with augmentations
pipeline.

pretrained PIRL, we fine-tuned the model and the downstream linear or mlp layer (add a relu
activation layer) using the following tuned hyper-parameters: data augmentation, learning
rate 0.5, 2000 epochs, batch size 64, cosine learning rate decay. The pretrained model and all
the other hyper-parameters are defaulted from https://github.com/HobbitLong/
PyContrast.


https://github.com/HobbitLong/PyContrast
https://github.com/HobbitLong/PyContrast
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Figure 6: (a) PIRL from scratch to classify corrosion (b) Pretrained PIRL on ImageNet to
classify corrosion
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Figure 7: Additional Grad-CAM examples on a image with the ground truth corrosion rating
6. Left to right: ResNet-18, ResNet-50, DenseNet, HRNet. High activation in red, low
activation in blue. All models predict this image as corrosion rating 5 is heavier than it
sho;lld be.

Figure 8: Additional Grad-CAM examples on a image with the ground truth corrosion rating
7. Left to right: ResNet-18, ResNet-50, DenseNet, HRNet. High activation in red, low
activation in blue. All models predict this image as corrosion rating 5, which is heavier than
it should be.

5 Grad-CAM

We add more Grad-CAM results to show the performance of our best trained models where
they cannot predict our testing corrosion images correctly. In Figure 7, all models predict a
sample test image, with the ground truth rating 6, as rating 5. In Figure 8, all models predict
a sample test image, with the ground truth rating 7, as rating 5. From these results, we found
CNNs may not be able to handle thin corrosion well. Instead, they focus on easily-learned
areas, such as water staining or heavier corrosion.

6 Results and Conclusions

In supplementary Table 2 we see results presented in the main paper along with 2 additional
results: pretrained supervised ResNet-50 with a MLP classifier and pretrained supervised
ResNet-18 with a MLP classifier. These new model results are pretrained on ImageNet [3]
and the MLP classifiers are trained for 2000 epochs using all the same hyperparameters used
in the augmentation tuning experiments in Table 1 from the main paper. The pretrained
networks are finetuned on our corrosion 10-fold training data sets, validated on the corre-
sponding 10 validation data sets, and then evaluated on our test set of 60 images. We use
the best combination of augmentation methods during the training process. For ResNet-18
model this includes a combination of random crop and color jitter and for ResNet-50 model
this includes a combination of random crop, color jitter, random erasing, random perspective,
and random resized crop.

In the top section of this table we see supervised results with no data augmentation to
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Method Backbone [ Classifier | Test Accuracy
Supervised + No augmentation ResNet-50 | N/A 0.72 +/- 0.03
Supervised + No augmentation ResNet-18 | N/A 0.78 +/- 0.03
Supervised + Combo augmentation ResNet-50 | N/A 0.77 +/- 0.03
Supervised + Combo augmentation ResNet-18 | N/A 0.81 +/- 0.04
Supervised + Combo augmentation + Pretrained | ResNet-50 | MLP 0.76 +/- 0.03
Supervised + Combo augmentation + Pretrained | ResNet-18 | MLP 0.81 +/- 0.03
Supervised + Combo augmentation + Pretrained | ResNet-50 | Linear 0.76 +/- 0.02
Supervised + Combo augmentation + Pretrained | ResNet-18 | Linear 0.83 +/- 0.01
Self-Supervised + Pretrained ResNet-50 | MLP 0.75 +/- 0.03
Self-Supervised + Pretrained ResNet-50 | Linear 0.68 +/- 0.02
Self-Supervised ResNet-50 | Linear 0.72 +/- 0.04
Self-Supervised ResNet-18 | Linear 0.70 +/- 0.03

Table 2: Results from main paper plus additional pretrained on ImageNet results using
ResNet-18 and ResNet-50 with best combinations of augmentation methods found and pre-
sented in the main paper.

establish a baseline. The second part of this table contains the best supervised ResNet-
50 and ResNet-18 results with the best combinations of augmentation methods; with these
tuned augmentation methods we see that for both ResNet-50 and ResNet-18 we improve our
test accuracy. In the third section, we see new results not in the main paper. These results
are shown in order to demonstrate further that combining tuned data augmentation methods
with pretrained models and a MLP classifier, we can further achieve similar performance
to trained from scratch supervised and self-supervised performances. In the fourth section,
we see the pretrained results from the main paper which use a linear classifier. Then, in
the bottom section of the table, we again present our self-supervised representation learning
results from the main paper. With all these results, we make several observations and list our
findings here: i.) pretrained and supervised ResNet-18 with a linear classifier outperforms
ResNet-18 trained from scratch when both are using tuned data augmentation methods, ii.)
ResNet-50 trained from scratch outperforms pretrained and supervised ResNet-50 with a
linear or MLP classifier also all with tuned data augmentations used, iii.) pretrained and
supervised ResNet-18 with linear classifier outperforms pretrained and supervised ResNet-
18 with a MLP classifier, iv.) pretrained and supervised ResNet-50 with linear or MLP
classifiers perform the same, v.) pretrained and supervised ResNet-18 with linear classifier
outperforms pretrained and supervised ResNet-50 with a MLP or linear classifier, vi.) pre-
trained and supervised ResNet-50 with linear classifier outperforms pretrained PIRL with
ResNet-50 backbone and a linear classifier, vii) pretrained and supervised ResNet-50 with
MLP classifier outperforms pretrained PIRL with ResNet-50 backbone and MLP classifier,
and viii.) overall, pretrained and supervised ResNet-18 with the tuned data augmentations
yield the best test classification performance (0.83).
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