
WU ET AL.: ERA 1

Appendix: Supplementary Analysis and
Experiments

Guande Wu
guandewu@nyu.edu

Jianzhe Lin
jianzhelin@nyu.edu

Claudio T. Silva
csilva@nyu.edu

New York University
New York, USA

Appendix A: Implementation

In this appendix, we will describe our implementation of the model and training procedure.
Our code is based on Pytorch[5].

Model

Summarizer

The summarizer has the same effects as the selector LSTM in [4], while our summarizer
incorporates three sources of features i.e. entity-relation aware features extracted by STGCN,
the visual scene features processed by an LSTM and difference attentions as we describe in
Section 3.1. Below, we will describe the implementations of each sub-module.
STGCN Our STGCN module relies on an object detection module to extract the objects
and their features. We implement the object detection module upon Facebook Detectron2
[6]. Specifically, we apply a Fast R-CNN with ResNet-50 pre-trained on Microsoft COCO
dataset[3]. After assembling the extracted objects into the Spatio-Temporal Graph, we apply
a three-layer Graph Convolution Network on the graph. Each layer has a hidden size of 256
and a shortcut connection from the precursory layer. After processing the graph, we perform
average pooling on the vertexes of each frame.
Difference Attention Our difference attention module is identical to the original one in [2].
Visual Scene Feature Extraction We employ GoogLeNet to extract the visual scene fea-
tures from the videos. We explot the preprocessed feature file provided by [1] 1. Then we
process the features by an LSTM identical to the selector LSTM of [4].
MLP for Feature Fusion We employ a Multi-Layer Perceptron (MLP) to fusion the features.
Our MLP has three layers, each of which has 128 hidden units.
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1https://github.com/KaiyangZhou/pytorch-vsumm-reinforce
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Encoder and Decoder LSTMs

Our encoder LSTM, decoder LSTM are identical to the original versions in [4].

Critic

Our critic consists of two modules i.e. LSTM and Video Patch Module described in Section
3.3. The LSTM is identical to the discriminator LSTM in [4]. As we mentioned in Section
3.3.2, Video Patch Module comprises of M building blocks. In practice, we set M = 3.

Losses
In the training process, we employ a series of loss functions. Below, we present their defini-
tions.
Score-Sum Loss Our loss function for Score-Sum Loss is defined as:

Lsum =
Σst√

T
(1)

Sparsity Loss We also employ the sparsity loss defined in [4] as:

Lsparsity = ||
1
M

Σ
T
t=1st −σ || (2)

where σ = 0.15 which is same with [4].
GAN Loss The GAN loss for the critic is defined as:

LGAN = ||E(c(x′))−E(c(x))||2 +λ (||∇c||2−1)2 (3)

where x is the original features and x′ is the reconstructed features. c represents the function
of the critic.
Reconstruction Loss Our reconstruction loss is identical to the vanilla VAE as:

Lreconst =
||x′−x||2

2
(4)

where x is also the original features and x′ is the reconstructed features.
Prior Loss Our prior loss Lprior is also identical to the vanilla VAE and [4].

Training Procedure
In this section, we specify the learning of parameters of 1. Summarizer θs 2. Encoder LSTM
θe 3. Decoder LSTM θd 4. Critic θc Following [4] we train the models via three steps.

1. Optimizing {Lreconst +Lprior +Lsparsity +Lsum} to update the parameters θs and θe.

2. Optimizing {Lreconstruct +LGAN} to update the parameters θd .

3. Opimizing −LGAN to update the parameters of θc.

We fulfill the training procedure on an NVIDIA RTX-8000. It takes us approximately
30 hours to train the models (of 5 splits) on TVSum and 16 hours on SumMe. We train our
models with Adam optimizers with a learning rate of 1e-4 and 0.1 times after ten epochs.
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Figure 1: The clip of first 20 seconds of Kid’s playing video in SumMe. The ground-truth
summary has three shots in the period, and we denote them as S1,S2,S3. When the tradi-
tional method (SUM-GAN) can capture S1 and S3, it falls short in capturing S2. S2 is salient
because it records the boy’s running away from the leaf stack after he got "attacked" by the
two girls. The boy’s movement can only incur minor visual changes from the perspective of
the whole scene. Thus the traditional method relying on the scene-level features may fail to
capture it. By comparison, the Spatio-Temporal Graph can extract the object-level features
and represent the movement by changing the boy and the other two girls’ entity relationship.
In the Figure, Our ERA approach successfully captures S2 when the traditional method not.

Appendix B: Case Study

In this appendix, we demonstrate the importance of entity relationship by two cases.

Case 1: Kids’ Interaction

We first further describe the case shown in our introduction. The video depicts a scene
where three kids are playing around a leaf stack. We clip the first 20 seconds of the video
and demonstrate the advantages of our proposed ERA method based on it. As Figure 1
shows, the clip comprises three key shots according to the ground truth frame scores i.e. S1,
S2 and S3. S1 shows that three kids run towards the leaf stack and start playing with each
other. Then, S2 records the boy’s running away from the leaf stack because he got "attacked"
by the two girls. Finally, S3 describes that the boy runs back to and hits back the two girls.
The summary generated by the ground-truth scores includes all three shots. Though the
traditional method can also capture S1 and S3, we observe that it can fall short in capturing
S2. S2 shares similar backgrounds and entities with previous shots as they all have three kids
playing around a leaf stack. However, S2 is salient because of the boy’s movement away
from the two girls. Such movement only induces minor visual changes from the perspective
of the whole scene. Thus, the traditional method relying on the scene-level features can
find it challenging to capture the trivial visual change. By comparison, the movement can
change the spatial relationship between the boy and the two girls in Spatio-Temporal Graph.
Thus, our method can extract the moving event by the object-level features and successfully
include S2 in the summary. In this case, the relationship between the entities boy and the
other two girls plays a profound role in recognizing the importance of S2. By contrast, the
absence of the entity-relationship may lead to the failure of the clip summarization.
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(a) SUM-GAN (b) ERA

(c) Ground-Truth (d) Shot B frames

Figure 2: TVSum Video-11: We compare the summaries generated by SUM-GAN (a), ERA
(b) and ground-truth frame scores (c). B is a key shot, describing the staff lifts a platform
and pets the dog on the platform. Our method and ground-truth summary capture the shot
while SUM-GAN not. Figure (d) shows the frames in the shot B.

Case 2: Taking Care of A Dog
Then, we study an essential shot in TVSum Video-11, which also reflects the necessity of
using the entity-relationship aware method. The video introduces a pet store and describes
how the staff takes care of a dog. The shot B refers to a scenario when the staff lifts a platform
and pets the dog on the platform, as Figure 2 (d) shows. B is an essential shot because the
action is a precursory step for the latter dog-cleaning work. The summary generated by the
ground-truth scores also includes the shot shown in Figure 2 (c). However, the baseline
SUM-GAN fails to capture the shot shown in Figure 2 (a). The cause can be that the action
of lifting the platform and petting the dog is minor from the perspective of the entire scene
so that the scene-level visual features extracted by GoogLeNet can not capture the action.
By comparison, in our ERA method, the temporal relationship can capture the movement of
the platform, and the spatial relationship can capture the petting action. Thus, our method
will assign a high score to the shot and include it in the summary, as Figure 2 (b) shows.

Appendix C: Error Analysis
In this appendix, we analyze the errors of our method. We identify the following common
sources of error by comparing our summarized videos on TVSum and SumMe with the
ground truth.
Limited Object Detection Accuracy Since our method relies on the object detection al-
gorithm to build the Spatio-Temporal Graph, the algorithm’s accuracy strongly affects our
method’s performance. When object detection fails for various reasons, e.g., low resolution,
our method can also fail to capture the essential shots. We find our method fails due to the
limited object detection accuracy in SumMe 15, TVSum-15 and TVSum-21.
Video Titles Video titles are common at the beginning of some videos, especially in TVSum.
These titles may be a YouTuber’s logo and are not necessarily associated with the video
content. However, the titles often deviate from the video content by the visual features.
Thus, our method and other state-of-the-art models can get confused by them and fail to
exclude them in the summary. We observe this error in TVSum-5, TVSum-15, TVSum-32,
and TVSum-48.
Captions in the Videos The text caption accompanies some videos. We observe that our
method may fail when encountering such video scenes. An example is TVSum-5, in which a



WU ET AL.: ERA 5

caption is used to conclude the video content while the visual content is akin to the previous
shots. Our method fails to capture the shot.
Abrupt visual changes The video quality is strongly affected by the shooting conditions.
Camera movement and focus can lead to abrupt visual changes in the videos. Those abrupt
visual changes can cheat the model to think this is an important segment when it does not
mean anything. Such a phenomenon can be observed in SumMe-32 and TVSum-8.

Appendix D: Training Stability Analysis

In this appendix, we compare the training stability of our method and the vanilla GAN. As
Section 4.3.2 shows, using W-GAN and Patch mechanism only brings minor improvement
on the baseline SUM-GAN compared to our ERA method. However, W-GAN can still make
the training process steadier. To verify it, we report the training process of the different
discriminator-side methods in Figure 3.

We choose to report the reconstruction loss in the test dataset since it reflects the distance
between the original and reconstructed visual features. We avoid using GAN loss because
its definition varies in W-GAN and vanilla GAN. From Figure 3, we observe there is a jump
of reconstruction loss after 400 steps in all five splits of the vanilla GAN. By comparison,
the jump is not observed in both W-GAN and W-GAN with patch mechanism. Thus, we
confirm that our method can be advantageous for the steadier training process.

Appendix E: Analysis of Video Patch

We introduced the video patch mechanism to cope with varying video lengths in Section
3.3.2. Though the mechanism is proved to be beneficial for the overall performance in our
ablation study (Section 4.3.1), its effects on the long videos are not confirmed. To address it,
we further analyze the mechanism’s effects on the videos of different lengths. We compare
two variants of the STGCN model, which are trained by W-GAN and W-GAN with a patch
mechanism (W-GAN-Patch). Since the only difference is the availability of patch mecha-
nisms, the comparison can reflect the effects of the mechanism. Firstly, we rank the SumMe
videos by their lengths and derive the F-measure values of the two variants on each video.
Then, we calculate the distance of the values and visualize them in Figure 4. From Figure 4,
we find that the longer videos (right of X-axis) tend to have positive values while the short
videos can be both negative and positive. Since the Y-axis value reflects the performance im-
provement of W-GAN-Patch over W-GAN, the observation shows that W-GAN-Patch can
improve the performance on the longer videos, which confirms our theoretical analysis in
Section 3.3.2.
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(a) Split 0 (b) Split 1

(c) Split 2 (d) Split 3

(e) Split 4

Figure 3: Comparison of the reconstruction loss in the training process of different
discriminator-side methods. The experiments are conducted on the five non-overlapping
splits of SumMe. GAN refers to the vanilla GAN; WGAN_PATCH refers to W-GAN with
patch mechanism. From the Figure, we observe that there is a jump of reconstruction loss
after 400 steps in all five splits of the vanilla GAN. By comparison, the jump is not observed
in both W-GAN and W-GAN with patch mechanism.
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Figure 4: Performance improvement of video patch mechanism. The Y-axis value corre-
sponds to the subtraction of W-GAN F-measure from W-GAN-Patch F-measure. The videos
on X-axis is arranged by the increasing order of the video length. The righter the video is
arranged, the longer the video is. The figure shows that the W-GAN-Patch tends to improve
the performance on the right side videos, which have a longer length.
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