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A Calculating the Gradient of SSIM
The SSIM was first proposed in [1], and is detailed in [3]. Given x and x̂ as the local pixels
taken from the same location of the same frame in the clean video and adversarial video,
respectively, the local similarity between them can be computed on three aspects: structures
(s(x, x̂)), contrasts (c(x, x̂)), and brightness values (b(x, x̂)). The local SSIM is formed by
these terms [3]:
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The structural similarity index (SSIM) measure in Equation (2) can be expressed as: [3]
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The mean of x , the variance of x, and co-variance of x and x̂ can be represented as µx, σ2
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and σxx̂. They can be calculated respectively:
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Given x and x̂ as the local pixels taken from the same location of the same frame in the clean
video and adversarial video, respectively, the local similarity between them can be computed
on three aspects: structures (s(x, x̂)), contrasts (c(x, x̂)), and brightness values (b(x, x̂)). The
local SSIM is formed as [3]:
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where µx and µx̂ denote means, σx and σx̂ are standard deviations of x and x̂, respectively;
σxx̂ represents the cross correlation of x and x̂ after deleting means; D1, D2, and D3 are
weight parameters. For SSIM metric, a value of 1 means that the two images compared are
the same. As the SSIM is calculated based on pixel level, it use a sliding window method,
which moves pixel by pixel by the window across the whole image. As we use uniform
pooling to combine the total SSIM for the whole videos, suppose we have N pixels in the
total videos, the SSIM can be represented as:

SSIM(X, X̂) =
∑

N
i=1 ·SSIM(xi, x̂i)

N
(5)

where xi and x̂i are the i-th pixel of each frame in the video. To apply the gradient decent op-
timisation method described in Section 3, we have to compute the gradient of SSIM with re-
spect to the adversarial video example X̂. As equation (9) shows, to compute~∇X̂ SSIM(X, X̂),
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Models λ value FR ASP(SSIM)

CNN+LSTM
0.8 56.94% 0.0429
1.0 56.94% 0.0412
1.5 56.94% 0.0401

I3D
0.8 51.22% 0.0316
1.0 48.78% 0.0268
1.5 48.17% 0.0198

Inception-v3
0.8 66.05% 0.0534
1.0 65.14% 0.0518
1.5 64.22% 0.0454

Table 1: The results of DeepSAVA(without BO) on UCF101 dataset for different λ values.

we only need to calculate the gradient ~∇x̂i SSIM(xi, x̂i). The process is represented as fol-
lows. [2] We define four parameters to deduce the derivative of local SSIM:

M1 = 2µxµx̂ +C1, M2 = 2σxx̂ +C2
P1 = µ2

x +µ2
x̂ +C1, P2 = σ2

x +σ2
x̂ +C2

(6)

Therefore, the gradient can be expressed as:

~∇x̂ SSIM(x, x̂) =
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2
[M1P1 (M2x−P2x̂)+P1P2 (M2 −M1)µx +M1M2 (P1 −P2)µx̂]

(7)

B Effects of λ

To decide the value of λ , we applied the DeepSAVA without BO selection on 200 random
selected videos of UCF101 dataset to evaluate the effect of λ . The average success pertur-
bation (ASP) is the average of the SSIM score of perturbation for the adversarial examples
that could mislead the model successfully:

ASP(SSIM)) = avg(SSIM(Vadv −Voriginal)),

where Vadv denotes the generated adversarial video that could successfully mislead the clas-
sifier and Voriginal is the original video. The results of applying λ = 0.8,1.0,1.5 on three
models are presented in Table 1. We can see that the bigger the λ , the lower the FR while
the lower the perturbation.While, for the CNN+LSTM model, the fooling rate remains the
same across all tested λ values, but the perturbation level is the lowest at λ = 1.5. Thus, we
choose λ = 1.5 for the CNN+LSTM model and λ = 1.0 for I3D and Inception-v3 model to
trade off the performance in terms of the fooling rate and average success perturbation.

C Average Absolute Perturbation
Average Absolute Perturbation can be introduced to measure the perturbation level for each
method. As mentioned in the paper, the sparse Flickering adds a small perturbation per
frame, but cannot obtain comparable results to ours (Figure 4 in the paper). Thus, we will
choose the pure sparse attack (Sparse) as the main baseline to show the average absolute
perturbation. As the baseline is guided by l1,2 norm and ours is based on SSIM loss, we will
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Models Attack Method UCF101
FR ANI AAP(l1,2) AAP(SSIM)

CNN+LSTM
Sparse 54.31% 15.31 0.054 0.043

DeepSAVA(without BO) 56.94% 7.87 0.077 0.060
DeepSAVA(BO) 57.11% 8.01 0.071 0.058

I3D
Sparse 11.22% 49 0.092 0.079

DeepSAVA(without BO) 48.78% 11.34 0.0857 0.054
DeepSAVA(BO) 99.89% 5.74 0.055 0.0233

Inception-v3
Sparse 41.84% 38.21 0.062 0.0512

DeepSAVA(without BO) 65.14% 14.88 0.072 0.052
DeepSAVA(BO) 77.49% 11.43 0.071 0.0508

Table 2: Comparison with Sparse baseline, DeepSAVA without BO and with BO on different
models by only perturbing one frame. Gray cell shows the best results.

Approach CNN+LSTM Inception-v3 I3D time (s)FR average loss FR average loss FR average loss
BO Selection 55.81% 0.21 72.22% 3.39 100% 1.35 16.1

brute force search 55.81% 0.27 72.22% 3.39 100% 1.35 70.4

Table 3: Fooling Rate, average selected maximum loss and average time spent for one video
of BO Selection and brute force search.

record the average perturbation of l1,2 and SSIM separately. To achieve a fair comparison,
we set the maximum l1,2 norm ball constraint as 0.1 and maximum SSIM constraint as 0.92.
Suppose the fooling rate is f , and distant matrix is D, which can be set to (1-SSIM) or l1,2
norm, thus the average absolute perturbation(AAP) can be represented as:

AAP(D) =
∑N D(Vadv −Voriginal)

N
∗ f +Dmax ∗ (1− f ),

where Vadv denotes the generated adversarial video that could successfully mislead the clas-
sifier and Dmax is the maximum constraint; N is the number of adversarial samples achieving
successful attack. We run experiments on 200 random selected videos of UCF101 dataset
and record the results of FR, ANI, AAP(l1,2) and AAP(SSIM) in Table 2.

D The accuracy of Bayesian Optimisation Selection

To justify whether the Bayesian Optimisation could select the most critical frames, we take
the brute force search experiments to obtain the upper bound of the performance: when
the selection frame is 1, we select the key frame manually one by one of the video, and then
record the maximum loss found by the search. We randomly select 100 videos from UCF101
in different categories. The fooling rates, average maximum loss and average time spent for
one video on three models are shown in the Table 3. We also compare the selected maximum
loss by BO and brute force search along the video samples in Figure 1. We can see that we
can obtain the same results as the brute force search, but spending much less time.
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(a) CNN+LSTM

(b) I3D

(c) Inception-v3

Figure 1: Minimum loss selected by BO and brute force search along videos
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E Comparison experiments with lp-norm and SSIM
constraints

E.1 I3D model

Constraint l2,1 budget = 0.1 SSIM budget = 0.94
Methods Sparse DeepSAVA(no BO) DeepSAVA Sparse DeepSAVA(no BO) DeepSAVA

FR 60% 58.22% 91.25% 12.9% 66.2% 97.46%
Time (s) 24029.8 4109.78 1483.96 30803.2 8276.1 1586.3

Table 4: Comparison with Sparse baseline method

E.2 CNN+LSTM model

Constraint l2,1 budget = 0.08 l2,1 budget = 0.1
Methods Sparse DeepSAVA(no BO) DeepSAVA Sparse DeepSAVA(no BO) DeepSAVA

FR 55.71% 48.57% 50% 58.57% 58.57% 57.14%
Time (s) 22800.5 13777.6 15010 23336.8 19774.4 20866.4

Table 5: Attack CNN+LSTM model on UCF101

Constraint SSIM budget = 0.96 SSIM budget = 0.94
Methods Sparse DeepSAVA(no BO) DeepSAVA Sparse DeepSAVA(no BO) DeepSAVA

FR 50% 47.14% 47.14% 52.85% 52.85% 52.85%
Time (s) 15120.21 4039.24 5131.24 15952.52 6341.7 7433.3

Table 6: Attack CNN+LSTM model on UCF101

For the CNN+LSTM model, we can see that although the Sparse baseline could obtain higher
fooling rate, but it will spent much more time to generate the adversarial examples. Our
method using combined perturbation will spent less time and obtain comparable fooling rate.
Because here we select the first frame to attack, the BO cannot improve the performance as
I3D model.



R.MU ET AL. : APPENDIX: DEEPSAVA 7

F Fooling Rate of attacking different number of frames
across models.

(a) CNN+LSTM

(b) I3D

(c) Inception-v3

Figure 2: Fooling Rate of attacking different number of frames across different model.

G The effects of number of maximum allowed iteration
Here we show the relationship between the iteration, l1,2, SSIM, and Fooling Rate for the
I3D model with combine perturbation. It can be seen that set maximum iteration as 100 will
not lead to a large distortion.

max iter FR max(lp) max(ssim) ave(lp) ave(ssim)
30 0.5 0.11 0.094 0.052 0.069
50 0.5 0.135 0.094 0.059 0.099
80 0.529 0.131 0.0959 0.0595 0.081

100 0.529 0.131 0.095 0.052 0.067
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H Transferability across RNN and CNN models

In Table 7, we studied the transferability from RNN models to CNN models. As the adver-
sarial videos generated from the RNN models in rows are fed into the Inception-v3 and I3D
models in columns to perform the black-box attack. In Table 8, we utilised the adversarial
videos generated from Inception-v3 and I3D models (models in rows) to attack other models
in columns. From the fooling rates shown in tables, we could see that the transferability from
RNNs to CNNs is not as good as that from CNNs to RNNs. As in Table 8, the fooling rates to
attack RNN models are higher than those to attack the I3D and Inception-v3 models. While
that happens maybe because the I3D model has the highest training accuracy, it engages the
lowest fooling rate when performing the black-box attack on it. As we can also conclude
that due to the lowest training accuracy the CNN+Vanilla RNN model obtains, it achieves
the highest fooling rate on attacking unseen Vanilla RNN model. Overall, compared with
the Sparse baseline, our method could achieve better transferability.

Models CNN+LSTM CNN+Vanilla RNN CNN+GRU
Sparse DeepSAVA Sparse DeepSAVA Sparse DeepSAVA

Inception-v3 22.95% 24.36% 22.80% 26.72% 22.90% 31.03%
I3D 6.56% 10.08% 7.01% 9.48% 7.63% 8.62%

Table 7: Fooling Rate across CNN models on UCF101.

Models Inception-v3 I3D
Sparse DeepSAVA Sparse DeepSAVA

Inception-v3 100% 100% 33.61% 37.80%
I3D 13.04% 14.13% 100% 100%

CNN+LSTM 50.0% 52.17% 53.48% 54.62%
RNN 71.74% 82.40% 60.50% 64.02%
GRU 50.0% 51.08% 42.68% 49.58%

Table 8: Fooling Rate across CNN and RNN models on UCF101.

I Generated adversarial examples

The adversarial videos generated by DeepSAVA are demonstrated anonymously by https:
//www.youtube.com/channel/UCBDswZC2QhBhTOMUFNLchCg

https://www.youtube.com/channel/UCBDswZC2QhBhTOMUFNLchCg
https://www.youtube.com/channel/UCBDswZC2QhBhTOMUFNLchCg
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I.1 target model: I3D

(a) ParallelBars (b) Haicut (c) Additive Noise (d) Perturbation

(e) Javelin Throw (f) Horse Race (g) Additive Noise (h) Perturbation

(i) Walking With Dog (j) Ice Dancing (k) Additive Noise (l) Perturbation

(m) Writing On Board (n) Biking (o) Additive Noise (p) Perturbation

(q) Writing On Board (r) Skiing (s) Additive Noise (t) Perturbation

Figure 3: Original, adversarial examples, additive noise and combined perturbation (normal-
ized into [0,1] for the visualization) when only one frame in the video is perturbed. The red
labels are the wrong predictions based on videos.
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I.2 target model : CNN+LSTM

(a) ParallelBars (b) Diving (c) Additive Noise (d) Perturbation

(e) ApplyEyeMakeup (f) Apply Lipstick (g) Additive Noise (h) Perturbation

(i) Apply Lipstick (j) Brushing Teeth (k) Additive Noise (l) Perturbation

(m) Bench Press (n) Military Parade (o) Additive Noise (p) Perturbation

(q) skiing (r) Soccer Penalty (s) Additive Noise (t) Perturbation

Figure 4: Original, adversarial examples, additive noise and combined perturbation (normal-
ized into [0,1] for the visualization) when only one frame in the video is perturbed. The red
labels are the wrong predictions based on videos.
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I.3 target model:Inception-v3

(a) Band Marching (b) Mixing (c) Additive Noise (d) Perturbation

(e) Basketball Dunk (f) Breast Stroke (g) Additive Noise (h) Perturbation

(i) Parallel Bars (j) Balance Beam (k) Additive Noise (l) Perturbation

(m) Walking With Dog (n) Hammering (o) Additive Noise (p) Perturbation

(q) Writing On Board (r) Golf Swing (s) Additive Noise (t) Perturbation

Figure 5: Original, adversarial examples, additive noise and combined perturbation (normal-
ized into [0,1] for the visualization) when only one frame in the video is perturbed. The red
labels are the wrong predictions based on videos.
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