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1 Related Literature

Grid Cells During spatial navigation in an animal such as a rat, grid cells are notable for
firing at regular intervals as space is traversed. These points of activity correspond to a tri-
angular lattice with a particular phase, orientation and scale [21] (Figure la). Grid cells
with the same orientation and scale, but different phases, form what are known as grid cell
‘modules’ [61]. As a rodent moves, any individual grid cell’s activity is ambiguous as a
means of encoding the animal’s position. The joint activity of multiple grid cell modules,
however, can uniquely encode a position. Importantly, this encoding scheme has a large
representational capacity [16] (Figure 1a middle). Information about self-movement is used
to update the current location representation by each grid cell’s firing corresponding to the
positional change (Figure 1a bottom). This process, known as path-integration, means that
after returning to the same position, the same grid cells will be active regardless of the path
taken [21, 46]. Note that our work does not deal with how grid cells might actually im-
plement path integration - rather we explore the significance of path integration in a neural
population for developing useful object representations. The combined properties of a large
capacity for unique spatial representations and path integration enable grid cells to act as a
powerful substrate for encoding spatial information. For a more in depth discussion of grid
cell computations as explored in this work, we direct readers to Lewis et al. [39].

Cortical Models Our work builds on previous models of the cortical architecture of the
mammalian brain. Hawkins et al. [23] demonstrated that networks with a columnar archi-
tecture, where different layers correspond to sensory and location-based representations, can
learn inputs such as objects composed of synthetic features. Neurons in these layers receive
external sensory and self-movement information, while they share connections that enable
learned associations between features and locations, as well as predictions during inference.
Neural activity (including input features) are represented in the distributed activity of sparse
binary vectors - a form of encoding where the dimensionality used is relatively high, but
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Figure 1: Using grid cell representations for object recognition. a) The combination of
multiple grid cells of different scale and orientation can uniquely encode the location of
a sensor (e.g. fovea). Here we use multiple grid cell modules with sparse activity (bottom,
each indicated by a rhombus) to encode and update the sensor’s location with self-movement
information. b) It is hypothesized that this process can be used for object recognition with
active sensors, and we use sequences through a 5 x 5 grid of feature patches extracted from
MNIST images to test this. c¢) GridCellNet takes in motor input when the sensor moves
(1) and updates its location representations. The current location representation is used to
predict incoming sensory information (2), before this is received (3). Correctly predicted
sensory information is then used to update the location representation (4). Locations are
initially ambiguous, represented using a union of locations, and disambiguated over time via
sensory input. Yellow and textured green dots in the location layer indicate two different
objects which are compatible with the current sequence. Classification is successful once
the representation is primarily consistent with a single object class. The two-layer network
is based on cells with sparse binary activity, dendritic segments, and Hebbian-like learning,
following Lewis et al. [39], and with figures reproduced/modified with permission from the
authors.

where only a small subset of the available nodes are ever active at a time (taking values
of 0 or 1). Such encoding has numerous appealing properties, including tolerance to noise
[1], a large representational capacity, and the ability to encode notions of similarity between
objects [22].

Grid Cells for Object Recognition The cortical models in Hawkins et al. [23] did not
explicitly discuss how the brain might implement the encoding of location information. In
Hawkins et al. [24], it was suggested that neurons akin to grid cells might exist outside of the
entorhinal cortex in cortical columns throughout the brain, and could thereby support spatial
encoding in sensory modalities such as touch and vision (Figure 1b). Recent experimental
work has supported this possibility [40, 41]. In various sensory modalities, grid cells could
then be used to encode feature locations in an object’s own reference frame. The idea that
each of the columns throughout the brain would be learning object representations in a mas-
sively parallel process was dubbed the Thousand Brains Theory. This nomenclature was to
contrast the theory to those that suggest a more strict hierarchy with object-like representa-
tions only existing at certain levels of processing [24]. While models developed from this
theory were capable of rapidly learning objects and performing recognition, this was limited
to synthetic data-sets [39].

In Bicanski and Burgess [5], a system that relied on grid cell computations to recognize
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images was implemented, similar to our own approach. Importantly, however, they explored
object recall (i.e. from the training data-set) rather than generalization to unseen data. As
such, the implementation assumed that at any given time-point, only one learned represen-
tation would be consistent with the observed input, and so the system only represented one
possible hypothesis. An additional difference from our work to Bicanski and Burgess [5] is
that, in GridCellNet, the location representation in the grid cell layer needs to be inferred
from sensory and self-movement information (Figure Ic). In Bicanski and Burgess [5], all
objects share a fixed reference frame across learning and inference, and so with perfect path
integration, the system always knows exactly where the current fixation is in the external en-
vironment. As we discuss separately, this raises issues for translation invariance. Finally, this
model did not explicitly explore the benefits of such a system for the visual reconstruction
of unsensed regions of an input.

Perception Through Saccades in Humans There is a long history of studying the repre-
sentations that humans develop and combine over saccades, a process known as transsaccadic
integration. Despite extensive study, the precise nature of these representations remains un-
clear [26]. At one extreme, it is suggested that humans view the world with very little if
any history of previously represented features, as suggested by phenomena such as change
blindness, where humans are remarkably insensitive to changes in the image during saccades
[20]. At the other extreme is the suggestion that humans maintain a detailed, picture-like rep-
resentation across saccades [44].

Experimental evidence supports a compromise of these views. On the one hand, humans
cannot piece together percepts across saccades at a pictorial/pixel level, such as complex ar-
rays of random dots [52]. Despite this, there is evidence that integration occurs at a more ab-
stract, feature level. For example, humans are able to integrate sequentially presented points
of light to make judgements about the shape of the triangle they form [25]. With regards
to object recognition, humans can also recognise an object that is built up over progressive
saccades, such as drawings of animals hidden among oriented lines [29]. Our work aligns
with this evidence by demonstrating a model that builds up and integrates representations
across space at a feature (rather than pixel) level.

It is also worth highlighting the central role that attention plays in human perception.
In order to efficiently sample the environment, humans rely on signals such as bottom-up
saliency to inform future fixations. There has been significant effort in the literature dedi-
cated to modelling how the serial application of attention is driven [8, 69]. We note that we
do not explicitly model attention in this work, such that fixation selection is described by a
uniform distribution with inhibition of return, although it could be integrated to enable the
system to more efficiently sample the input space.

Multiple Views in Machine Vision Object recognition in computer vision often focuses
on processing static images from a single viewpoint. Systems that do integrate views sam-
pled from multiple locations often make no assumptions about their spatial arrangement,
simply aggregating these inputs in a spatially agnostic manner [51, 59]. Other systems that
do take account of spatial information typically make use of an external, ground-truth refer-
ence frame. Such spatial information might take the form of indexed positions in the input
image [70], a 2-dimensional coordinate [36, 45], or a combination of the 3-dimensional co-
ordinate, pitch, and yaw of a camera in a room [2]. Furthermore, this spatial information
is often used to solve machine vision tasks such as scene representation rather than object
recognition [2]. Finally, in settings where translation invariance is explored, performance
relies on training on tens of thousands of examples at different possible locations in the
external environment [45, 51].
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While computer vision techniques for object recognition typically focus on processing
images in isolation, the field of robotics faces similar challenges (and potential benefits) to
biological agents of embodiment and the ability to interact with the environment [7]. Simi-
lar to the work we present here, Browatzki et al. [11] presented a classification system in a
robotic agent which framed visual object recognition as a problem of localization (what ‘en-
vironment’, i.e. object is the sensor viewing, and where is it viewing it from). In their case,
recognition was investigated in a robot rotating a 3D object, and thus identifying its location
on a view sphere. The object was inferred from its sensory observations and proprioceptive
data via an iterative particle filter, not unlike our system. Pezzementi et al. [50] implemented
a similar approach in a robotic system for touch perception of three-dimensional letters, and
in particular demonstrated the benefit of such an approach for translation and rotation in-
variance. Notably, however, these approaches evaluated recognition on the same objects that
were learned on (i.e. not investigating true generalization of object classes), and did not make
use of grid cell representations or other biologically plausible elements when implementing
the recognition algorithm.

Work in robotics has recently inspired new approaches in more general computer vision.
Hoang et al. [27] presented a classifier where, similar to capsule networks [54] and our
own work, recognition is predicated on the consistency of object features within an internal
reference frame for the object. Unlike our work, they do not make use of grid cells, instead
assuming an idealized 2D map for encoding feature locations, and they train and evaluate
with five objects with highly diverse features that provide locally discriminative features
(e.g. ateddy bear vs. a patterned flower vase), rather than assessing generalization to novel
examples of similar classes.

Few Shot and Continual Learning Few shot learning is a large field, and prior work
has addressed learning hand-written characters [19, 35, 70], or demonstrated the benefits
of memory-like mechanisms in the few-shot setting [55]. Our intent is not to present the
current work as a strong solution to the problem of few-shot learning. However, few-shot
training captures our biological motivation of humans learning rapidly from arbitrary feature
sequences. As such, we use the few-shot experimental setting to evaluate the performance
of our system.

In continual learning, a classifier is evaluated on its ability to learn novel classes while re-
taining the ability to categorize older classes. Robustness in this setting remains a significant
challenge for machine learning techniques such as deep learning that display catastrophic
forgetting, the phenomenon where information required to solve a novel task obliterates
previously learned representations [43]. Continual learning has received comparatively lit-
tle study in recurrent architectures [15], having first been formally evaluated by Schak and
Gepperth [57]. Such work, however, has confirmed that recurrent systems such as LSTMs
suffer from significant catastrophic forgetting. Many biologically motivated approaches for
continual learning have been identified for feed-forward networks, such as elastic weight
consolidation [33]. Unfortunately, recent evidence has demonstrated that these can be chal-
lenging to apply in recurrent architectures on tasks requiring substantial working memory
[15]. From the perspective of continual learning, the most similar approaches to GridCell-
Net are those that rely on external memory. Methods such as Gradient Episodic Memory
[42, 60] and progressive memory banks [3] have been applied in recurrent neural networks.
Unlike GridCellNet, these approaches rely on rehearsing on a stored bank of previous ex-
periences [60], or require an explicit, external memory system that continuously expands
[3]. As such, efficient and robust continual learning in sequential tasks remains an ongoing
challenge.
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2 Supplementary Methods

Code necessary to implement the models and results described is available at https://
github.com/numenta/htmpapers.

2.1 Sparse Feature Extraction

For our pre-processing of the data-set, we trained a convolutional neural network (CNN)
[37] in a supervised paradigm on a subset of the MNIST training data-set of handwritten
digits (54,000 images) [38], tuning it using a hold-out cross-validation section (6,000 im-
ages). This encoder network has the architecture shown in Figure 2a. A k-Winner Take All
(k-WTA) layer [1] follows the second max-pooling operation to enforce sparsity in the rep-
resentation (Figure 2b). While the non-zero values in this layer take on real-number values
(necessary for useful gradients during learning), we require binary feature vectors for input
to the sensorimotor network. We therefore used the network after training to pass images
through until the k-WTA layer, and then binarized this representation, providing us with
a 5 x5 grid of features. Each grid location is a vector of dimension 128 which contains
regional information (covering a 16 x 16 pixel-patch) about the image representation in a
sparse format. The sequential provision of these features forms the input to all of our down-
stream classifiers. Note therefore that none of our classifiers (GridCellNet or the classifiers
we compare to) receive direct pixel inputs as their features, while there is some overlap in
pixel space between the inputs to each of these feature representations.

CNN Details It is possible that binarization could lead to a significant loss of informa-
tion. We verified that a linear classifier achieves accurate classification with these binarized
features, with an evaluation-set accuracy of 99%-+. We also verified that a decoder accurately
reconstructs the input image from these features. In order to achieve optimal performance, it
is useful for the feature vector to have a reasonably large dimension (128), number of non-
zero elements (19 during training, 29 during evaluation), and high entropy (intuitively, how
often does each input feature contribute to a representation across all examples). To optimize
the entropy, we made use of two hyper-parameters. The k-WTA’s duty cycle monitors how
often a unit is contributing to representations. The boosting factor biases a unit’s activity to
target a given duty cycle (see Ahmad and Scheinkman [1] for details). Tuning the duty cycle
and boosting factor ensures a greater number of neurons each contribute information at some
point, and the representation becomes more distributed (Figure 2c).

In order of layers, the CNN architecture is composed of a convolution (kernel size 5,
channels 64), max-pooling, convolution (kernel size 5, channels 128), max-pooling, k-WTA,
and three fully connected layers (dimensions of 256, 128, and 10). k-WTA applied to the
max-pooling layer is local (that is, the k-winners are determined across all channels at a given
spatial location, rather than across the entire image space). This ensures that each extracted
feature vector has the same sparsity. We used stochastic gradient descent with a learning rate
of 0.01, momentum 0.5, batch size of 128, and 10 epochs of training.

2.2 Sensorimotor Network

Network Architecture The location layer consists of 40 grid cell modules, each a lattice of
50 by 50 cells. A grid cell module has a particular scale and orientation, while the active lo-
cation corresponds to the current phase of activity in the module. In our model, grid cells can
be either active or inactive, and activation is determined by either the current representation
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Figure 2: The pre-processing convolutional neural network. a) The encoder CNN is trained
end-to-end to perform classification, with a k-WTA operation that constrains the mid-level
representations to a specific level of sparsity. Numbers below operations show the channel
dimension. b) An example of what the k-WTA and binarized representations might look like.
Note that in all of our tasks, the classifiers are given a series of sparse feature vectors (each
of dimension 128) from 5 x 5 total locations. This forms a sequence of sensory inputs, here
represented with the eye and its movement. The order with which the features are sampled
across this 5 x 5 space can either be fixed for all examples during both training and testing,
or follow an arbitrary sequence. ¢) For optimal performance, the two parameters of k-WTA
(target duty cycle and boost strength) are optimized so as to ensure most of the neurons
achieve the target duty cycle. On the left is shown a typical value for the boosting factor
used in past models, while on the right we show the result of using the larger boosting factor
and target duty cycle that we arrived at through hyperparameter tuning.

in the sensory layer, or movement applied to the previous location representation; at time
step ¢ and for grid cell module i, these are denoted by the binary arrays A;?scérllse and A;f’lf{f,ve

respectively. We model the location phase that determines A}f’rf{éve using a square rather than
the biologically motivated triangular lattice used in Lewis et al. [39], although this has no
major consequence for the system.

The sensory layer is identical to that used in Hawkins et al. [23]. The input features are
binary vectors of length 128 with 29 active values (i.e. approximately 77% sparsity). The
sensory layer in turn consists of a corresponding 128 mini-columns, which receive the input
features in a one-to-one fashion. Each mini-column in the sensory layer consists of multiple
cells (here 32). This enables the mini-columns to use sparse activity to uniquely encode
features associated with particular objects (i.e. location representations). The active cells in
mini-column i at time-step ¢ are denoted by the binary array A"’

Stage 1: Using Movement to Update the Location Representation If the location layer
has active cells, then each module uses the current movement information to compute a new
set of active cells. Each module will apply a translation to its 50 by 50 activation pattern,
according to the movement information. The translation vector is different in each module,
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and is determined by applying the following dilative rotation to the movement vector:

M = 1 CQS(Oi) —sin(6;) 0
s; |sin(6;)  cos(6;)

where i denotes the particular grid cell module, 6 its orientation, and s its scale.

The translated 50 by 50 pattern will rarely align neatly with the original 50 by 50 cells,
except in discrete environments. Typically each active cell in the pattern will land on the cor-
ner between four cells, so each active cell will activate up to four cells after the translation
vector has been applied. During inference, this is indeed what happens, but during learning
we allow the grid cell module to have more certainty about the current location. During
learning, translating the active pattern will not increase the number of active cells; instead,
the module’s internal state includes a list of high-precision active phases, and the module
applies the translation to those phases, rather than estimating those phases from the current
set of active cells. This difference in the algorithm’s behavior in inference and learning re-
flects the fact that binary representations will always lead to some spatial uncertainty during
inference.

When inference begins for a new object, no location information is available - this will
instead become available at stage 4, discussed below, and so inference proceeds to stage 2.

Stage 2: Predicting the Sensory Input with the Location Representation The cells
in the mini-columns have dendritic segments which receive activity from the location layer.
Let D, be the set of dendritic segments of cell ¢, with segments indexed by d. If a dendritic
segment is active (that is, a cell in the sensory layer is predicted by the activity of the location
layer), then it is in a predictive state. Let the binary vector 7" denote the sensory cells that
have at least one active dendritic segment, and 0" a dendritic threshold, then:

2

ﬂlin.c _ {lvad [chnd 'A}?rglove > em]
0, otherwise

Stage 3: Determining Activity in the Sensory Layer If a given sensory layer cell that
is predicted also receives activity from the input feature (that is, it is in a column receiving
sensory input and was therefore correctly predicted), it will be active and inhibit any other
cells in the mini-column that are not predicted. Note that multiple cells in any given mini-
column can be active if they are predicted by the current location representation. If no cells
in a mini-column are predicted but it receives sensory input, then all cells in the mini-column
will become active.

Stage 4: Using the Sensory Representation to Update the Location After the sensory
representation has been determined, the location layer receives inputs from the sensory layer.
In particular, the sensory features help to recall location information, and supplement the lo-
cation representation arrived at by path integration. Similar to equation 2, this is determined
by the overlap between the active cells in the sensory layer, and the learned weights. In this
case however, an active dendritic segment is sufficient for a location cell to now be active,
such that:

loc,i i
e _ 17D A > 01 5
' 0, otherwise
loc,i loc,i
Aloc,i o T S || 7% >0 \
r,sense — IOC‘i . ( )
A} move, Otherwise
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At this stage, the next movement is received, and the four stages are repeated for the next
time-step. Classification using the location representations as input features is discussed
separately in the main text, Section 2.4.

Learning in the Sensorimotor Network Learning takes place via the reciprocal strength-
ening of connections between the active representation in the sensory layer, and the current
location representation. The aim is to associate a given feature with a given location in that
object’s reference frame. When a new object is learned, the location representation at the
first sensation is randomly initialized, such that each object operates in a different location
space. This enables multiple objects to be jointly represented during inference, as the prob-
ability of overlap between different objects’ location spaces is low. As further sensations are
performed during learning, the location representation is updated using movement informa-
tion as described in Stage 1 above. For the sensory layer, as the feature-location association
has yet to be learned, a random cell in each mini-column receiving an input will be selected
to be active. Each active cell in the sensory and location layer will then form reciprocal
connections on one of their dendritic segments (d”), according to the following:

loc .__ ploc | 4in

Dc.,d’ T Dc,d’ |A;,learn 5)
. |

Dg}d/ = Di‘r,ld/ |At(.,)scense 6)

Here "|" is used to indicate the bitwise OR operator; that is, if a synapse already exists
between two cells, then it is unaffected by the learning rule.

Following the above, the network can rapidly learn objects by visiting each feature once,
performing a single set of weight updates for each feature. Note that due to the path-
integration performed by the grid cells, both learning and inference can take place using
an arbitrary order through the features of the object - there need be no correspondence be-
tween the order taken at learning vs. that used at testing. Note also that the learning process
could in principle be implemented on hardware in a parallelized form, although for biological
plausibility, this is run as a serial process.

There are several hyperparameters of the model that might be tuned to optimize perfor-
mance, such as increasing the grid cell module size to increase the capacity of the model (see
Lewis et al. [39] for a quantitative exploration of this). The main parameter we tuned was the
dendritic threshold 6'°°. If this was too high, grid cells were too stringent in which sensory
features were present to become active; if it was too low, grid cells were too easily activated
by spurious sensory features. Details on how we tuned hyper-parameters are provided in
Section 2.5.

2.3 Recall Method

As well as evaluating generalization using the approach outlined above, we also evaluate
the ability of the system to recall examples from the training data-set, as this is a common
evaluation method in the literature for related systems. To do so, we use the object recog-
nition method employed in Lewis et al. [39]. In particular, as sensations are progressively
provided to the network, recall of a particular object occurs when the location representation
converges to that of a single learned object. If that location is a subset of the learned loca-
tion representations for the true (target) object at the corresponding position of the sensor,
then recall is successful. This may fail if the representation is a subset of any other learned
location representations, in which case the process has converged to an incorrect object or
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position. An alternative failure case is that the representation never converges to a subset of
a learned representation. Formally, the recall system’s probabilities for a particular object
instance y during recall correspond to:

L (AP C L)
= 7
PO {0, otherwise ™

where L' is the learned location representation for any particular position m. The above
recall is only considered successful if p(y) = 1, y is the target example object, and m is the
actual position of the sensor on the object at the current time-point. Note that the position of
the sensor m in the external reference frame is only used to evaluate the correctness of the
system from an experimenter’s point of view, and this is not information privy to GridCellNet
itself.

Intuitively, recall is considered to have taken place when the representation has con-
verged to that of a single representation. Thus, there is no additional read-out node; instead,
the uniqueness of the location representation represents the object’s identity. As such, this
process can take place within the same system (and indeed at the same time) as the classifi-
cation algorithm outlined separately. For example, the system might successfully classify an
input, but never converge to a single representation, in which case no single learned example
ever appeared to align well with the test object. Alternatively, it might classify an object, and
subsequently converge to a single representation. In this case, the system both recognises the
class of the object, as well as the similarity of the particular test object to a previously learned
example. Note that for our main result we use a slightly higher dendritic threshold 6'°° when
evaluating recall than for generalization (20 for recall vs 16 for generalization). We discuss
the significance of these processes operating in parallel and the different dendritic thresholds
separately.

2.4 Comparison Classifiers and Decoder Network

We compare GridCellNet to both a recurrent-neural network (RNN) and a k-Nearest Neigh-
bors (k-NN) classifier [17]. For our RNN, we use a long short-term memory (LSTM) clas-
sifier [28]. This network receives an input sequence of length 25, corresponding to the 25
locations in the image feature space. Each feature vector in this sequence is a sparse feature
vector extracted from our CNN, as for GridCellNet. In addition, sensor location or move-
ment information is concatenated to the feature, outlined below.

The RNN has a single hidden layer of dimension 128. Using additional layers did not
appear helpful. We used weight decay [48] of 0.001 and optimized with Adam [32]. Learn-
ing rates were selected via a grid-search for the best performance on each classification task
independently, where each task is distinguished by both the number of training examples,
and whether evaluation was using a fixed or arbitrary input sequence.

Providing Movement and Location Information to the RNN In order to provide a fair
comparison (and in particular the possibility of the LSTM developing an internal reference
frame), we provide the LSTM with movement information similar to that provided to Grid-
CellNet. Specifically, at each step in the input sequence, two values are concatenated to the
input feature vector. These are the Euclidean magnitude of the just-performed movement,
and the angle (measured in radians in standard position). These are derived from the pre-
vious and current location of the sensed feature in the 5 x 5 input space. This movement
information is always provided to the LSTM when the input follows an arbitrary sequence.
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In cross-validation experiments, we also explored providing movement as the discrete x and
y-displacements in the 5 x 5 grid, but we found the separate magnitude and angle form to
provide the better classification accuracy. In any setting where the input follows a fixed se-
quence, the explicit location information (as the O to 24 index in the 5 x 5 space) is instead
provided, as this appeared to provide better performance.

Decoder Network In order to enable visualization of the current feature representations
in GridCellNet, we trained a multi-layer perceptron (decoder network) on the sparse binary
features from a subset of the MNIST training data-set (54,000 images). This decoder has
a single hidden layer of dimension 512, with input 128 % 5 %5 and output 28 x 28. For the
decoder we used Adam with a learning rate of 0.001, a batch size of 64, and 10 epochs of
training.

Other Details We also compared classification in our network to a k-NN classifier. This
receives the same input as the RNN and GridCellNet, but as a single extended array, rather
than sequentially, and without the additional movement/location information. The number
of neighbours for the k-NN classifier and the dendritic threshold 8'°° / y-threshold were, like
the LSTM learning rates, selected via a grid-search for each classification task. Additional
details of the selected hyper-parameters and how the data-set was divided are provided in
Section 2.5.

2.5 Hyper-parameter Selection

In Figure 3, we provide a break-down of how different splits of the data are used for different
steps in feature extraction, hyper-parameter tuning, and learning. In Table 1, we list the
hyper-parameters arrived at for each classifier, specific to each learning task.

For the continual learning tasks, where fixed input sequences of 20 examples-per-class
were used, the same LSTM and GridCellNet hyper-parameters were used as for the equiva-
lent standard (i.e. not continual) learning setting.

3 Supplementary Experiments

3.1 Supplementary Comments : Translation Invariance and Inference
Given Arbitrary Sequences

In this section, we elaborate on the connection between arbitrary input sequences and trans-
lation invariance. As shown in Figure 4a, a particular sequence of eye movements will be
followed the first time an object is seen. The next time this object is seen, however, the eyes
are unlikely to sample it at the exact same location they did the first time it was seen, nor are
they likely to follow the same sequence after this. Such an approach would require a priori
knowledge about what the object is before it has been inferred, or that bottom-up saliency
signals could support such a perfect alignment of sensation within the object. Experimental
evidence supports such an approach being implausible. While humans occasionally demon-
strate repeated patterns in the sequences they take when viewing complex objects or scenes
[49], evidence does not support regimented, fixed adherence to such sampling being benefi-
cial for recognition [18].

As aresult of the above reality, translation invariance therefore represents a real challenge
for sequential classifiers. In particular, as the stimulus can move in the real world, and the
starting position of where classification begins can translate, the system must be able to
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Figure 3: Division of the data-set for training and evaluation. As the down-stream classifiers
use features derived from a network classified end-to-end, and we are interested in few shot
learning, we divide the data set such that the training of the various systems uses different
sub-sets of the data. This also allows us to perform hyper-parameter tuning on hold-out data,
with the exception of the key hyperparameters which are deliberately selected to enhance
few-shot learning on the final evaluation data for all classifiers. Note that although source
images are therefore re-used during this step of hyper-parameter tuning and final evaluation,
the feature vectors generated by the CNN encoder will vary with the random seed used,
and therefore between the settings in which hyper-parameter tuning and final evaluation are
performed.

adapt. If the classifier requires a fixed spatiotemporal input sequence regardless of where it
begins on the object, it will, by definition, generally fail to sample the object (Figure 4b).
Instead, it must be capable of beginning anywhere on the object, and subsequently follow
whatever trajectory samples the input (Figure 4c). In our main results, we discussed that two
requirements of translation invariance are therefore 1) this ability to integrate features from
arbitrary starting positions and sequence inputs and ii) the use of an internal reference frame
for classification. A classifier can be envisioned that can handle arbitrary sequence inputs,
but whose classification process relies on an external reference frame to encode the spatial
relations of features. While this satisfies (i), this system will fail if that object is moved in
the environment, exposing it to out-of-distribution spatial coordinates. Finally, for complete
translation invariance, a third requirement is iii) feature inputs that are invariant given small
translations, and equivariant across larger translations.

To satisfy requirement (iii), we assume that the pre-processed feature map we gener-
ate with the CNN is approximately translation equivariant, i.e. that each high-level sparse
feature is the product of approximately the same transformation, simply shifted in space.
This is a reasonable assumption in shallow CNNs due to weight sharing [72], although as
we discuss later, there are more natural ways to satisfy this requirement. Furthermore, the
representation should be invariant to small translations within the receptive field. As we
cannot guarantee requirement (iii), we do not evaluate the classifiers on images translated in
pixel space. As noted separately however, GridCellNet satisfies conditions (i) and (ii), and
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Table 1: Choice of Hyper-parameters for Classifiers Given Fixed or Arbitrary Input Se-
quences

# of training examples per class Fixed Arbitrary
GridCellNet 6™_threshold / y-threshold

1 12/0.7 12/0.7
5 12/0.5 12/70.5
10 14/0.5 14/0.5
20 16/0.3 16/0.3
LSTM (1 epoch) Learning Rate

1 0.005 0.01

5 0.005 0.01
10 0.005 0.01
20 0.01 0.005
LSTM (50 epochs) Learning Rate

1 0.002 0.002
5 0.02 0.002
10 0.005 0.002
20 0.005 0.005
k-NN # of Neighbours

1 1 1

5 1 1

10 1 7

20 1 9

therefore represents a significant step towards a sequential classifier that can perform online
translation invariance to arbitrary locations.

For a fair comparison in these experiments, we include an LSTM that receives self-
movement information, such that it could in principle also develop an internal reference
frame. As we demonstrate however, only GridCellNet has the inductive biases to perform
object recognition given arbitrary input sequences given so few training examples.

We also include a k-NN model in our results. We note that the k-NN actually performs
better than the LSTM with 50 epochs of training, despite the LSTM being provided with
location information. This appears to be due to the challenge the LSTM faces of learn-
ing longer range dependencies given so few training examples, in spite of being provided
with information about where the current feature is located in the sequence. The ability of
the LSTM to solve this appears sensitive to adjustments in hyper-parameters including the
learning rate.

It is worth noting that given sufficient training time and examples, the LSTM’s perfor-
mance steadily improves. Deep learning architectures are undeniably powerful; indeed we
used them to perform the initial feature extraction step for all of our classifiers. It is there-
fore likely that, given enough training examples, the LSTM’s performance would match
GridCellNet. Moreover, given appropriate training conditions, recurrent architectures can
learn to develop grid cell-like units capable of path integration [68]. The purpose of Grid-
CellNet is to demonstrate the benefit of the inductive bias that path integration together with
only simple, Hebbian-like learning rules can provide. The contrast in performance in the
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Figure 4: Translation Invariance in Sequential Classifiers. a) A sequence of hypothetical
foveations during learning. b) During inference, the initial sensation may begin on a different
part of the object (translation). Classifiers with a rigid input sequence requirement won’t
adequately sample the image. c) Regardless of where inference begins on the object, the
system should sample the object and correctly classify it (i.e. translation invariance).

few-shot setting supports the proposed architecture as a principled and biologically plausible
mechanism by which humans might rapidly learn under the challenging settings explored
here, and a useful approach for designing machine learning models.

3.2 Supplementary Comments : Predictive Representations

We limit visualization to situations where the network converges to a single representation
(e.g. a single example of a ‘9’, as opposed to several compatible ‘9’s), as the decoder in its
current form is unable to make sense of the input if the representation at inference includes
a union of object representations. This isn’t to say that GridCellNet’s predictive represen-
tations before this point are not also meaningful, they are simply more difficult to visualize
without bespoke training of the decoder. When GridCellNet is trained on 5 examples per
class, single-object convergence occurs for around 25% of all objects. On a small subset
of these (<5% of the single convergence objects, or around 1% of all objects), GridCellNet
fails to predict a feature for every region of the image. Note that this is not the same regime
as in Section 3.3 (Recall of Training Examples Despite Noise); in that setting, the training
data was used at evaluation time, and a higher dendritic threshold was used. In contrast, we
evaluate predictive representations in the same regime as generalization to unseen examples
of objects, and using a dendritic threshold that supports such generalization.

Note that at every time-step, the model can make a prediction about any arbitrary lo-
cation. It would therefore be possible, in principle, to query every location before single-
convergence. As noted above, however, our decoder network would not be able to produce
meaningful visualizations from these representations. Also note that GridCellNet does not
make predictions at the pixel-level. Rather these are at the abstract, feature-level, but the
decoder enables us to visualize these directly.

3.3 Recall of Training Examples Despite Noise

In the Section 3.1 of our main submission, we demonstrated that GridCellNet can generalize
to novel examples of MNIST that it has not seen in the training data. The following sec-
tion demonstrates that generalization occurs without the loss of recall ability. In particular,
GridCellNet can also operate in a regime focused on recalling a specific learned example,
rather than classification. This has clear relevance in the natural world, where occasionally
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it is necessary to recognise whether one has seen a particular instance of an object before.
Also note that while the following results replicate the broad functionality seen in previous
work, this is performed using an internal object reference frame. Prior biologically plausi-
ble approaches assumed a fixed reference frame across all objects [5], rather than inferring
locations from the combination of sensory inputs and self-movement.

Similar to Bicanski and Burgess [5], where 33 faces, 33 objects, and 33 scenes were
used, we evaluate performance after learning 100 objects (10 of each MNIST class), and in
the context of noise. In their primary simulation, noise was applied at learning in the form
of pixel blurring, rather than at inference time (although they also explored conditions such
as occlusion, which we do not consider here). We were concerned that any noise robustness
in GridCellNet might in fact be attributable to the pre-processing stage, and so we applied
feature-level noise in the form of randomly flipped bits (changing a 0 to 1 or vice-versa)
at inference. For each feature vector in the 5 X 5 input space, n randomly chosen bits are
flipped from their original values (Figure 5a). We demonstrate the ability of GridCellNet to
correctly recall the precise object that it observes as a function of the amount of noise.

Figure 5b shows that in our main condition with a higher dendritic threshold (8¢ = 20),
GridCellNet remains robust up to around 30-35 flipped bits, or around 1/4 of all bits. This is
also slightly more than the number of on-bits in the feature vector without noise (29). Such
robustness is consistent with the known advantages of sparse representations for robustness
[1]. We also show that, using the same dendritic threshold that was used for classification
with 20 training objects per class (8'°° = 16), recall is generally not as high-performing. This
is especially the case in the low-noise setting. Interestingly, there is actually an improvement
in recall accuracy as a small amount of noise is added, particularly for this lower dendritic
threshold. This appears to be a result of noiseless feature vectors occasionally being compat-
ible with multiple learned objects, particularly with an easily surpassed matching threshold.
In this case, the network never settles on any one particular example that is close to the input.
The introduction of some noise appears to eliminate spurious matches to learned representa-
tions, as the features that truly relate to the learned representation are more robust to noise.
Importantly, in either the low or high threshold case, there is a regime in which recall ac-
curacy approaches 100%. We discuss the significance of different dendritic thresholds and
improvements with noise later.

While it is challenging to make direct comparisons to related work due to differences in
approaches (e.g. Bicanski and Burgess [5] manually selected 9 salient feature locations for
each object, rather than sampling the entire input space as we do), it is worth noting that
successful recall is observed in spite of remarkable inter-stimulus similarity. In particular,
many previous studies showing successful recall used stimuli with often high inter and intra-
class diversity, such as objects and scenes as varied as teddy bears vs flower pots [27], or
a Greek statue vs an image of a brain [5]. Such variety significantly simplifies the task of
recalling a particular learned object, whereas any particular MNIST digit can be very similar
to another within its own class, or even to that of another class.

Finally, while the total number of possible sensations (25 features) is much higher than
in Bicanski and Burgess [5] (9 features), we highlight that recall normally occurs long before
all of these features are sampled. For example, the mean number of sensations required for
recall is 4.2+ 0.1 (mean model performance across three random seeds and 95% confidence
interval) when there are 0 flipped bits and 8'°° = 20. In a noisy regime, such as 20 flipped
bits, we actually observe a slight decrease in the mean number of sensations, to 2.8 +0.1.
Thus we observe that GridCellNet operates both robustly, as well as efficiently, in the recall
regime.
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Figure 5: Recall of Training Examples as a Function of Noise. Following previous work, the
ability of the system to recall objects learned during training is evaluated. a) To determine
the robustness of this process to corrupted inputs, noise is applied at the feature level in terms
of flipped bits. n random bits are flipped in each of the 5 x 5 input features individually. b)
Accuracy of recall shown as a function of flipped bits, with two different dendritic threshold
values (6'°°). The shaded region shows the 95% confidence interval of the mean across three
random seeds.

3.4 The Use of Self-Movement Information

We have argued that GridCellNet is able to perform well in the setting of arbitrary sequence
inputs because of its use of path integration. By updating internal location representations
with self-movement and sensory inputs, the mutual consistency between these two sources
of information enable it to accurately identify an input stimulus, even when the sequence of
inputs follows an arbitrary sequence across space. It is possible however that GridCellNet
is simply an effective ‘bag-of-features’ classifier - that classification would be successful
given any random order of sensory inputs, with no alignment between their location on
the object and the movement of sensors. More-over, it is notable that the LSTM begins
to approach the performance of GridCellNet on arbitrary sequence inputs as the number
of training examples increases. While this is impressive, the LSTM may also be simply
integrating features without any consideration of their spatial arrangement.

To evaluate this, we perform a form of ablation where the GridCellNet and LSTM classi-
fiers are provided with sensory and self-movement information as usual during learning, but
then false motor information during inference. This motor information is derived from an
alternative, fabricated sequence of movements over the object, and therefore does not align
with the sequence of sensory inputs (Figure 6a). For a classifier that relies on sensorimotor
alignment to predict the next sensation and appropriately update its internal representation,
such an ablation should significantly effect classification accuracy. For a system that simply
keys off the sensory features it receives, with no concern for their spatial relations, such a
change should have minimal effect. We perform the evaluation in the setting of arbitrary
sequence inputs with 10 learning examples per class.

The results in Figure 6b show that GridCellNet’s classification accuracy suffers consid-
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erably in the context of false-movement information, while the LSTM’s does not. This result
is consistent with the proposal that GridCellNet has the inductive bias to make use of self-
movement information, and does not simply key off a random assortment of the features that
it receives.

These results also support the conclusion that the LSTM uses the capabilities of back-
propagation of error to learn a relatively effective mapping between randomly ordered sen-
sory features and the output class, with no concern for their spatial arrangement. While this
more simplistic approach might seemingly resolve the task at hand given sufficient training
data, it would be inconsistent with how humans generally recognize objects (i.e. relying on
global shape and the structured arrangements of features [4, 10]), and as observed in Figure
2 in our main submission, appears inadequate for few-shot learning with less than a dozen
training examples. Furthermore, this makes the classifier vulnerable to incorrectly arranged
feature inputs that a human would not classify as a particular object.

We once again note that we do not argue that RNNs are incapable of learning path in-
tegration, as given an appropriate learning setting, grid cell-like representations have been
observed to emerge [68]. Rather, our aim is to show that at the outset, GridCellNet has this
capability, and that this enables it to process the input sequence in such a way that accounts
for the consistent spatial arrangement of features.

a) b) 1

0.9
0.8
0.7

Classification Accuracy

/
{ } = actual sensory input
RN Correct Incorrect Correct Incorrect

{ } =expected sensory input

GridCelINet LST™M
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Figure 6: Classifier Use of Self-Movement Information. a) We aim to measure whether
the classifiers are truly integrating self-movement information with sensory information, or
simply keying off randomly arranged sensations without any consideration for spatial ar-
rangement. In this condition, the motor information provided (red arrow) to the classifiers
does not correspond to the actual movement required for the provided sensory input (blue
circle). b) Accuracy when given the correct self-movement information, or fabricated (incor-
rect) self-movement information during evaluation. The error bars show the 95% confidence
interval of the mean across three random seeds.

3.5 Rapid Inference With Partial Input Sequences

In principle, GridCellNet can successfully classify an object before it has received a com-
plete sequence of all 25 features. Specifically, classification occurs as soon as GridCellNet’s
location representation drives a particular class node’s activation above a relative threshold.
Such early inference is obviously desirable as a means for increasing the efficiency of any
agent relying on the classification process to interact with the world.
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To assess the efficiency of GridCellNet’s inference process, we simply determined the
cumulative accuracy as a function of the number of sensations used (total possible of 25).
Note that, as detailed in the methods section, GridCellNet accumulates information for the
first several sensations, but only begins attempting classification on the fifth sensation in
order to avoid spurious classification. In Figure 7, we show that GridCellNet classifies most
of the examples given to it after observing only a fraction of the total input sequence; indeed,
the majority of the successful classifications occur before half of the total number of possible
sensations.
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Figure 7: Performance of GridCellNet as a Function of Sensations. Accuracy as a function
of the number of sensations. GridCellNet was trained with 5 training examples per class,
using arbitrary input sequences at training and test time. NB that GridCellNet waits for 5
sensations before it begins making predictions so as to avoid false hits in early inference. The
shaded regions show the 95% confidence interval of the mean across three random seeds.

3.6 Continual Learning

GridCellNet is not designed to specifically address the challenging issue of continual learn-
ing. Due to its use of Hebbian learning rules however, it benefits from natural robustness in
this setting, which is here explored in comparison to an LSTM trained with back-propagation
of error.

Continual learning is evaluated in two main learning splits (summarised in Figure 8a).
The classifiers are either trained on the first 5 MNIST digits and then the next 5 (i), or the
first 9 and then the final digit (ii). Accuracy is always evaluated across all classes, and
so the possible performance of an ideal classifier is also shown. Note that this is different
from the ‘split-MNIST’ evaluation sometimes used for continual learning [71], as it requires
an optimal classifier to accumulate information to eventually be able to recognise any of
the classes seen over the course of learning. The classifier heads are not modified beyond
standard learning rules. Additionally, weights are never artificially fixed.

Before examining the results, it is worth clarifying how learning proceeds in GridCell-
Net. For a back-propagation trained network to perform well, training examples are gener-
ally interleaved and shuffled for each epoch. In GridCellNet, the default form of learning
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is carried out in a continuous fashion, each class following the other and with only a single
pass over each object, with no returning to previously learned objects or requirement for
multiple classes to be observed in an alternating fashion. As a result, GridCellNet is in fact
naturally capable of a continual learning regime that would be considered even more chal-
lenging than the 5-5 or 9-1 split we simulate (Figure 8a.iii). While we show results for a 5-5
and 9-1 split, we do not show the results of such a ‘1-1-1..-1" split. In particular, an LSTM
classifier would be essentially bounded to 10% accuracy, classifying everything as the most
recently learned class. Despite such a setting being obviously catastrophic for the LSTM, it
is worth noting that this is a plausible situation for an agent in the natural world to encounter.
Imagine, for example, discovering a cluster of trees filled with a new kind of edible fruit,
with no other fruit varieties nearby; all learning must then proceed on that single class. Such
concentrations are common in the natural world [12].

The results in Figure 8b) demonstrate that GridCellNet is perfectly suited to gradually
accumulate new types of objects that it encounters, with the accuracy across all the possible
classes consistently improving as new classes are introduced in learning. In contrast, the
LSTM demonstrates the well-known property of catastrophic forgetting. As soon as a new
task is presented, knowledge required to solve the new classification problem rapidly over-
writes that used for previous tasks. The results also reinforce how GridCellNet’s use of a
single pass over each object (rather than multiple epochs) enables very rapid learning. Unlike
the LSTM, GridCellNet does not need to repeatedly re-visit examples it has seen before.

Note that these results are in the context of non-arbitrary (i.e. fixed) input sequences, as
well as 20-training examples per class. Thus we compare the performance of the systems in
a setting where the LSTM has a chance of performing better than GridCellNet, even though
this is not a particularly naturalistic setting (i.e. requiring more than a dozen examples per
class, and spatiotemporally fixed sensory input sequences). Despite this advantage (note in
particular the strong performance of the LSTM when trained on the first 9 classes in the 9-1
split), the LSTM is in a sense a victim of its own strength, and rapidly fails when attempting
to extend its learning to a novel class. If we were to evaluate performance in a more natural
setting with arbitrary sequences and e.g. 5-shot learning, GridCellNet’s advantage would be
even more stark. Finally, we note that our evaluation is not a strict continual learning setting,
in that the pre-processed sensory features were extracted across all 10 classes, although this
benefit is shared by both GridCellNet and the LSTM.

4 Supplementary Discussion

Grid Cells for Visual Object Recognition This work was partly motivated by the obser-
vation that humans solve our opening task effortlessly when performing saccades, and that
grid cells might enable a biologically plausible solution. It has been proposed that humans
might perform object recognition in a variety of sensory modalities by making use of grid
cell computations [24], including in vision [5]. As we note in our results, the ability to
achieve the same classification performance on an arbitrary sequence input represents a form
of out-of-distribution generalization, as the probability of a particular sequence trajectory re-
occurring is astronomically low. This leaves a classifier with the option of either ignoring
spatial relations entirely, or implementing a method to handle arbitrary sequences. Our work
demonstrates that grid-cell computations represent a credible approach to the latter when
implemented in a machine learning model.

In Bicanski and Burgess [5], the authors used features extracted from multiple locations
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Figure 8: Robustness in a Continual Learning Setting. a) The training and evaluation splits
used for the LSTM are shown in (i) and (ii), and for GridCellNet in (iii). For the LSTM,
training examples are interleaved within a particular learning block. b) Results of the 5-
5 split (left) and 9-1 split (right). As evaluation accuracy is always assessed across all 10
classes (even before they have been observed during training), the hypothetical performance
of an ideal classifier is also included. The shaded regions show the 95% confidence interval
of the mean across three random seeds.

of an image to perform a task with some similarities to our own, and this important work
was the first biologically plausible model to demonstrate such capabilities. As in the work
presented here, the features were sequentially fed to a classifier that integrated these into a
learned representation. When subsequently challenged to recall which of a handful of mem-
orized images were presented, the system successfully did so, even under settings such as
partial occlusion. Importantly however, their focus was on visual recognition memory, and
images used during training were the same as those used at evaluation time. There was there-
fore no need for the system to generalize to unseen examples, recognising the commonality
between different instances of a class. Consistent with this, the system’s working hypothe-
sis was always constrained to a single object. Our system is designed to represent multiple
compatible hypotheses at any given time-point. These multiple representations then serve as
features for GridCellNet’s final classification decision, supporting generalization. Our work
therefore represents the first demonstration that grid cell-like computations can be leveraged
to enable generalization on a visual task to unseen examples of an object class.

Empowering Agents with Flexibility Providing a system with the flexibility to perform
well with novel sampling sequences has obvious appeal. Together with performing classifi-
cation without traversing the entire sequence space, an agent employing such object recogni-
tion could sample the most informative regions in a principled manner, and thereby operate
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much more efficiently. This can be contrasted to an agent that is constrained to sample every
point, always following the same sequence, such as a raster scan across the image. A future
area of investigation will be pairing GridCellNet with a reinforcement learning agent that
can learn to optimally control the movement of its sensor.

Translation Invariance An issue relevant to both neuroscience and machine learning
is that of translation invariance as it applies to classifiers that rely on sequential inputs (see
Figure 4 for an intuitive demonstration). This form of translation invariance is different to
the concept explored in massively parallel processing, such as invariant recognition of an
object presented to a novel part of the retina [6], and yet it is still vital for a system that can
operate robustly in the real world [36]. In particular, translation invariance to novel locations
remains challenging for state-of-the-art classifiers, including architectures such as capsule
networks [47]. This supports the notion that massively parallel processing may ultimately
be limited in its ability to cope with out-of-distribution translations. More fundamentally,
operating in the natural world will always require some degree of integrating separately
sampled inputs. These realities support the importance of translation invariant sequential
classifiers. GridCellNet uses an internal reference frame to encode the spatial relations of
features and perform classification. As such, it is agnostic to the location of an object in
the external environment. By demonstrating that GridCellNet can handle sensory sequences
with arbitrary starting points and trajectories, we provided evidence that its classification
process brings the possibility of online, arbitrary translation invariance closer.

Bicanski and Burgess [5] argued that translation invariance would be possible in their
sequential, grid cell based model following additional changes. As the model was presented,
however, it assumed that all of the objects were aligned in the same grid cell reference frame
across training and testing. Such an assumption requires perfect path integration, and for
objects in the environment to always be correctly aligned with the grid cell’s responses. As
a method for the grid cells to re-align based on sensory inputs was not presented, translation
invariance does not automatically follow. While we do not simulate noisy path integration,
GridCellNet uses sensory inputs and iterative refinements with self-movement to infer posi-
tions in an internal reference frame, addressing these requirements. Research in the robotics
literature that used an internal reference frame to achieve translation invariance [50] repre-
sented an important proof of principle, but this work was limited to a tactile (as opposed to
a visual) task, and it did not explore generalization to novel instances of a class. GridCell-
Net addresses these limitations, serving an important step towards translation invariance for
sequential classifiers.

An important limitation in our approach is that translation invariance in GridCellNet
assumes that the pre-processing/foveal-response map we generate is translation equivariant
above sufficient movements, and invariant to small movements. In other words, a large
movement of an image in the input space should cause a corresponding shift of the represen-
tation at the feature-map level. That equivariance will hold in biology is intuitive (the foveal
circuitry does not change depending on where the fovea is fixated in the external environ-
ment), which is reassuring for the plausibility of the classification system we propose. From
a machine-learning perspective, our pre-processing method was justified on the basis that
translation equivariance approximately holds in shallow CNNs [72], and that it is a conve-
nient way to extract abstract features from the pixel-level input. However, in order to deploy
GridCellNet to natural translated images, the pre-processing would need to be streamlined to
operate in a patch-like manner end-to-end (i.e. like a biological fovea), and with a degree of
translation invariance to feature movement within the receptive field. Exploring architectures
that support this this will be an area for future work.
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Another limitation of our work is that we do not address other forms of invariance, such
as rotation or scale invariance, the latter of which was explored in Bicanski and Burgess [5].
They showed that, assuming an estimate of stimulus size is available, grid-cell representa-
tions can be appropriately updated by saccades of varying length, enabling scale invariance.
Implementing a model that naturally estimates stimulus size prior to recognition, as well
as addresses the question of rotation invariance, represents an interesting area for future re-
search.

Recall While classifying objects is a useful ability, so too can be recalling a particular
learned instance of an item. Humans appear to be quite capable at this task for a diverse range
of objects [9]. Such recall has also been the primary evaluation in previous systems relying
on path-integration supported recognition [5, 11, 27, 39, 50]. As such, we also demonstrated
GridCellNet’s ability to perform this task, including showing that recall was robust even at
considerable levels of noise at the feature-level. This finding is consistent with GridCellNet’s
use of high-dimensional, sparse representations, which can be remarkably robust to noise [1].
Unlike other biologically plausible models [5], GridCellNet relies entirely on an internal
reference frame to perform this recall, eliminating an important issue of neuro-plausibility,
and satisfying a requirement for translation invariance.

An additional benefit of GridCellNet is that recall can operate alongside the computa-
tions that support recognition of a general object category. While we observed more robust
memory recall using a higher dendritic threshold than that that used for classification, the
common value of 6'°° = 16 appeared compatible with some degree of both recall and classi-
fication. On the one hand, it is possible that the brain might dynamically alter the sensitivity
of the dendritic threshold to suit various purposes. In particular, a lower threshold supports
classification, but can be too accommodating when attempting to recall a specific example.
The possibility of neurons implementing such dynamic threshold adjustments is supported
by both detailed computational models and experimental recordings of neurons [31].

Alternatively, we observed that the addition of small amounts of noise could actually
improve recall, seemingly by ensuring the system did not spuriously believe a partly match-
ing feature was similar to a learned representation. Unlike such spurious matches, the true
feature that aligns with the learned representation should be more robust to this added noise,
and as such recall can successfully converge to the correct learned object. This benefit of
noise is interesting as we observed it rescuing recall to nearly 100% in the case of a fixed
dendritic threshold that could also be used for classification. The implication is that even
if a neuron cannot rapidly alter its threshold for dendritic spikes, intentionally adding noise
to the feature-level representations could be used to dynamically switch the system from a
classification state to a memory recall state.

Predictive Representations One appealing aspect of GridCellNet is its predictive na-
ture. While this is crucial to how it performs inference, we demonstrated that this has the
additional advantage that the system can predict unsensed regions of the input. These pre-
dictions take place even before inference, but for the sake of being able to visualize these
directly, we demonstrated examples of these predictions when GridCellNet’s representation
had converged to that of a single object.

As we noted in our results, GridCellNet makes its predictions at the feature level, rather
than at a pixel-level. The separately trained decoder then enabled us to visualize these
feature-level predictions as images. This is significant, as experimental evidence suggests hu-
mans can predict visual representations across saccades at an abstract feature level [25, 29],
but not at a pixel-like level [52]. As such, GridCellNet’s capabilities align well with the
psychological literature on such abilities in humans.
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It is worth noting that learning in GridCellNet can be viewed as rapid binding between
sensory features and their location in an object’s reference frame. The presented model
therefore represents a reasonable approach to arbitrary feature binding [63] using grid-cells
[24, 68], albeit here demonstrated in visual space [5]. The ability to rapidly form associative
representations and use these for a variety of downstream tasks, such as predicting unsensed
(e.g. occluded) features, supports the utility of this approach. It is worth emphasizing the
particular strength of path integration in this context, which allows the map used for binding
features to be traversed using pathways that have never been experienced. Such binding with
grid cells would likely be complimentary to other forms of visual feature binding requiring
more hard-coded, learned associations [14, 30, 53, 65].

Continual, Few-shot, and Rapid Learning We demonstrated that the proposed archi-
tecture naturally displays several desirable properties. As a consequence of the use of Heb-
bian learning rules and sparse representations, GridCellNet is robust in a continual learning
setting, enabling it to learn to recognise a novel object without obliterating its previous classi-
fication abilities. Notably, this can take place even when the novel class is shown in isolation,
as shown in our 9-1 split results. In other words, learning does not require that multiple new
classes are provided in a batch. This is appealing for its realism, as it seems odd to assume
that in the real world one would always encounter novel objects in batches with other novel
objects, rather than in isolation.

All of our evaluations were also conducted in the setting of few-shot learning, where
GridCellNet excels. We emphasize that while the accuracy achieved by GridCellNet is not
as high as some other approaches to few-shot learning [35, 70], our intention is not to propose
the model as a strong solution to that general setting. Rather our purpose is to show that in
the context of few-shot learning, the use of grid cell representations can provide robustness to
unpredictable input sequences, which should have downstream benefits for embodied agents.

Finally, the weight updates used also support extremely rapid learning in GridCellNet
from an algorithmic perspective - given a novel object, the system need only perform a single
pass and set of weight updates. Unlike the multiple epochs typical of back-propagation of
error, GridCellNet does not need to repeatedly revisit a given example to perform learning.

Alternative Architectures for Sequential Inputs While we compare our architecture
to an LSTM, it is possible that transformer networks [66] would perform better in this set-
ting. They currently represent the state of the art in many sequence based tasks, including
visual tasks [13], and explicitly encode positional information. This positional information
is usually absolute and fixed to an external reference frame, such as a the dimensions of
an unrolled image. This brings with it the usual issues for translation invariance, although
more recent work has explored using relative positional information in order to address this.
Interestingly, it was empirically found that transformer networks using relative positional
information perform less well on classification tasks [67]. It is also worth noting that, while
not explored here, grid cells can in principle encode 3D structure [34]. Transformer net-
works already suffer from efficiency issues with long sequences, for which the introduction
of a third dimension in the input representation would be problematic. The performance of
transformer networks on our task and the generalization of GridCellNet to 3D objects will
therefore be topics for future investigations.

Graph neural networks [56] may also be a viable basis for the tasks we outline here.
However, we are not aware of work that has been done implementing graph-neural networks
with an a priori representation for the 2D structure of image space together with Hebbian-
learning based object recognition. It is likely that such features will be important to achieve
the same performance we see across the variety of tasks explored (i.e. rapid learning and
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robustness to continual learning).

Additional Data Sets The results presented here are based on a challenging formulation
of MNIST [38] where local feature representations are sequentially fed to a classifier in a
few-shot learning setting. We acknowledge that demonstrating the architecture on additional
data-sets would be valuable. We would like to highlight however that MNIST is not triv-
ial in the setting we explore. This is exemplified by the results of the baseline models, as
well as the fact that previous, related models to our own have been restricted to synthetic or
non-generalization settings. This is also consistent with other domains in object recognition
where MNIST remains sufficiently difficult so as to be unsolved, including adversarial exam-
ples [58, 62] and robustness to general noise corruptions and out of distribution translations
[47].

General Limitations Despite the above promising results and avenues for future re-
search, we must highlight some general limitations of the current work. Although we at-
tempted to ameliorate this by using separate data sub-sets, our method of feature extraction
with a CNN on a held-out sample of MNIST digits is counter-intuitive given our setting of
sequentially sampling feature patches, as well as our explorations of few-shot and continual
learning. Importantly however, all the classifiers we compare to share this privileged fea-
ture access. As noted above, this approach also constrains the deployment of GridCellNet
to real-world settings, and as such, alternative feature extraction methods in terms of both
architecture (e.g. a patch-wise auto-encoder) and training methods (e.g. contrastive learning
[64]) will be explored.

It is worth noting that while our results demonstrate multiple benefits of the proposed
GridCellNet architecture, they also reinforce some of the strengths of neural networks that
use continuous activation values and learn via back-propagation of error. In particular, while
the LSTM does not have the inductive bias of GridCellNet to perform path integration in a
few shot setting, it makes rich use of the features available, and scales very well as more
learned examples are encountered. In regards to the former, the results from our false-motor
information ablation demonstrate that GridCellNet does not extract as much information as is
available from the features for predicting the target class. In terms of performance with more
training data, the ceiling for accuracy appears to be higher for the LSTM as the number of
learning examples grows, and indeed our own preliminary results suggest that with thousands
of training examples, GridCellNet’s memorized representations begin to interfere with one-
another. It is likely that the learning and inference mechanisms proposed for GridCellNet
could work well in tandem with more standard deep-learning approaches (as indeed are used
at the pre-processing stage) to benefit from both of these paradigms.
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