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We perform additional analysis of the proposed unsupervised learning framework in this
supplementary. The sections are organized as follows:

• Section 1: Notations

• Section 2: Pose-transformed dataset

• Section 3: Overall training algorithm

• Section 4: Experimental analysis

1 Notations
We provide a description for the notations used in the main paper and supplementary in
Table 1 to support easier referencing.

2 Pose-transformed dataset
We describe in detail here about the parts transformation sections mentioned in the main
paper. We randomly sample poses from the re-ID dataset itself to ensure that the generated
samples follow a re-ID setup.

2.1 Parts transformation
The pose and parts of an image, xo

i are transformed to generate the image, xp
j . We next

describe the process of spatial transformation, St for a randomly sampled target pose, po
t .

Fig. 1 gives an overview of the transformation process. The input to St are the source pose,
po

i , the corresponding body parts, bo
i (both extracted from the image, xo

i ), and the target
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Table 1: Notations Table
Symbol Description
F Network to be trained

xo
i ,y

o
i ∈ Xo Original dataset with pseudo-labels
N Number of samples in original dataset

xp
j ∈ Xp Pose-transformed dataset

K Constant scaling factor for PT dataset
xi,yi ∈ D Pseudo-labeled training set consisting

of both original and PT dataset
Z Labels corresponding to D
po

i Extracted poses from images xo
i

po
t Randomly sampled target poses

bo
i Extracted body parts from images xo

i
St Spatial transformation function for

target pose po
t

C Number of clusters for hierarchical clustering
Cl Cluster with index l
rl Radius corresponding to cluster Cl
cl Centroid corresponding to cluster Cl
dl

i Distance between sample xo
i and

cluster Cl
γ minimum radial distance

random pose, po
t to which the body parts need to be transformed. All the 3D poses are

projected to 2D via a random camera transformation before being utilized in the spatial
transformation function.

Each body part bo
i (m)10

m=1 ∈ RH×W×3, except the torso, is represented using 2 joints. Let
the two joints in 2D, forming a part bo

i (m) be denoted as J1(m) and J2(m). Next, let R1(m)
and R2(m) be the two joints representing the same part in the 2D projection of the target
random pose po

t . After aligning all body parts of po
i along the +ve X-axis, the vector from

mid-point, (J1(m) + J2(m))/2, of part bo
i (m) to J2(m) makes an angle of 0◦ wrt the +ve

X-axis. The part after aligning with the X-axis is centered at the origin (0,0).
The rotation parameter, α between the original part orientation (with joints J1(m) and

J2(m)) and the target part orientation (with joints R1(m) and R2(m)) is calculated as

α(m) =−atan2((Ry
2(m)−Ry

1(m)),(Rx
2(m)−Rx

1(m))) (1)

where x and y in subscripts represent the X and Y coordinates of the joints R1 and R2 in
the image space.

The next transformation involves scaling of the part bo
i (m) according to target part length.

We assume the part width remains fixed as modeling width would require an additional pair
of joints. The scaling transformation is then defined as

βx(m) = dist(J1(m),J2(m))/dist(R1(m),R2(m)) (2)

βy(m) = 1 (3)

where dist(., .) denotes the Euclidean distance between two joints in image space.
The last step requires translating the part bo

i (m) to the randomly chosen target pose’s
corresponding part location. One can simply find the mid-point of the target pose’s part as
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Figure 1: A sample illustration of spatially transformed body parts.
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Figure 2: Challenges with PT dataset. The left panel shows how spatial transformation caters
to partial occlusion or truncation. The right panel shows noisy parts prediction may lead to
noisy spatial transformations.

(Rx
1(m)+Rx

2(m))/2 and (Ry
1(m)+Ry

2(m))/2 for X and Y coordinates in the image space and
translate the origin to this location.

Finally, the torso is represented by 4 joints, two at shoulders and two at the hips. This
gives us the ability to shrink and expand the torso in both X and Y directions. This is specif-
ically helpful in cases when the source pose is front facing (where the torso is expanded)
and needs to be transformed to a side pose (where the torso is shrunk). Thus, only for torso,
scaling occurs across both X and Y directions. The line joining the mid-points of the hips
and shoulders is considered for computing the rotation parameter α .

2.2 Discussion

The PT dataset already comprises both natural and unnatural cases. We do not in any way
separate the unnatural-looking images, making PT dataset easier to adapt. The appearance
does not vary significantly, and thus, the overall performance remains almost the same even
when some unnatural PT images are present in the dataset. On ten runs, we obtain a mean
rank-1 performance of 93.6 with a standard deviation of 0.2, and a mean of 81.6 with an
approximate standard deviation of 0.15. Sec. 4 compares PT dataset with other image gen-
eration techniques.
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Fig. 2 shows two examples of the samples generated from Xo. The left one shows how the
spatial transformation effectively caters to body parts cut off from the image. The legs here
are not fully captured in the image. Thus, the pose estimation model truncates the legs and
the corresponding parts after the knee joints. However, due to the scaling operation during
spatial transformation, the truncated part is stretched to the target part’s pose.

The second example, on the right, depicts the case when incorrect pose prediction leads to
noisy parts prediction which further leads to noisy parts transformation. Here, for example,
the right leg is incorrectly predicted on the background. The parts thus obtained contain
background information. Any transformation of these will lead to all transformed images
containing background in the right leg. This limits us in generating the number of samples
per identity (scaling factor K). However, such aberrations do not adversely affect the model
as the performance peaks at K = 25 but saturates after that and does not noticeably degrade
(Fig. 3, main paper).

Null background. We aim to disentangle the factors of variation across the images
of a particular identity, i.e., pose and background, where the appearance remains constant.
This will let the model focus on the only important cue for re-ID, i.e., foreground (person)
appearance. We disentangle pose by generating multiple images of the same person in differ-
ent poses. To recognize all these images belonging to the same identity, the model discards
the only factor of variation, i.e., pose. Similarly, using a null background in PT data lets the
model only focus on the foreground person. We still use the original dataset, which helps
the model adapt to images containing different backgrounds. Table 2 compares methods that
generate backgrounds but lack overall generation quality. Briefly, foreground appearance
plays the most crucial role for re-ID and is thus the center of focus in the PT dataset.

Train F on D to initialize its parameters.
for each epoch do

Extract features F(Xo)
Assign each image xo to an individual cluster.
for each step s do

Calculate distance between each cluster according to [2].
Merge m nearest clusters.

end
Assign pseudo labels to Xo as per the obtained C clusters.
Get centroids cl and radii rl for every cluster Cl .
for each iteration do

for each sample xo
i in mini-batch do

Compute Lcls for xo
i .

Compute Ltri for xo
i , xo

i+, and xo
i−.

Compute Lsd for xo
i .

end
Optimize F over Lcls, Ltri, and Lsd using Adam optimizer

end
end

Algorithm 1: Training algorithm for the proposed discriminative learning framework.
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Figure 4: Ablation on Market-1501 by
varying λtri and λrd .

3 Overall training algorithm
Algorithm 1 summarizes the complete training pipeline of the proposed unsupervised learn-
ing framework. The first step involves training F on the pseudo-labeled dataset D. We term
this as the Initialization Step. This is followed by the discriminative clustering pipeline. We
use the hierarchical clustering algorithm [3] to classify Xo in C clusters. After calculating
the radii and centroids for all the clusters, we apply the radial distance loss on the dataset to
form compact clusters with significant inter-cluster distances. The discriminative step sig-
nificantly boosts the discriminative ability of the network F . We demonstrate this through
extensive experimental analysis, both in the main paper and the supplementary.

4 Experimental analysis
We describe additional experimental analysis of the proposed framework in this section. We
use τ = 0.1, γ = 0.5, λtri = 1, and λrd = 2 for our best reported results. We employ the
hierarchical clustering algorithm along with the best values of hyperparameters used such as
C, m and s from [3] for all our reported results.

Comparison to contrastive-center loss. CCL [1] aims to maximize the inter-cluster
distances but a strict separability is not guaranteed. Fig. 3 shows clusters learned on the
training data. In CCL, points from different clusters overlap even for dissimilar identities.
On the other hand, RD loss maintains a strict separability thereby separating even similar-
looking identities. Using CCL on Market-1501 yields 78.5@R1 vs 93.6@R1 (Ours).

Ablation on hyperparameters. Fig. 4 shows an ablation on the hyperparameters used
in Eq.4. We obtain best results at λtri = 1 and λrd = 2. The hyperparameters are robust to
small change in values. Significantly weighing λrd reduces the effect of triplet loss which
plays a role in moving similar features closer and dissimilar features farther. Significantly
weighing λtri reduces the effect of the radial distance loss.
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