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1 Architecture and Loss details
GEM pooling layer: To get fine grained features, our two stream network is terminated by
a Generalised Mean Pooling layer [7, 10], which is defined as:

f = [ f1, f2, ... fK ]
T , fk =
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where fk is a feature map, K is the number of feature maps input to GeM pooling, Xk is the
set of pixels in a HxW shaped feature activation map say. The output of GeM layer is a 1-D
vector with each component representing one feature map.

HC-Tri loss: Triplet loss [2] is a widely used metric learning loss in Person ReID. Each
mini-batch sample is considered as an anchor, and the hardest positive and hardest negative
sample is selected for this anchor. To effectively fetch positives in the mini-batch, the mini-
batch is formed by randomly sampling P identiies and randomly sampling K images of each
identity, resulting in a mini-batch with PK images. This loss compares each sample (anchor)
to all other samples which is a strict constraint, perhaps too strict to constrain the pairwise
distance if there exist some outliers (bad examples), which would form the adverse triplet
to destroy other pairwise distances [3]. Therefore, [3] considers adopting the center of each
person as the identity agent. In this manner, we can relax the strict constraint by replacing
the comparison of the anchor to all the other samples by the anchor centre to all the other
centres.
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v|i = 1,2, ...P} are the visible centres and {ci

t |i = 1,2, ...P} are the thermal centres.
Lhc−tri concentrates on only one cross-modality positive pair and the mined hardest negative
pair in both the intra and inter-modality.

2 Implementation details
We adopt ResNet50 [1] as the backbone network. The stride of the last convolution layer is
changed from 2 to 1 to get fine-grained features [8]. Input images are resized to 288x144
shape and padded with 10, followed by Data augmentation techniques like random cropping
of 288x144 shape and Random Horizontal flipping. We also use Random erasing augmenta-
tion [11] with probability 0.5 for some experiments, which we discuss in the Results section
of the main paper. We use a Stochastic Gradient descent optimizer (SGD) with momentum
as 0.9 and 0.0005 weight decay. We set initial lr as 0.01 for ResNet50 parameters and 0.1
for BatchNorm layer and Classifier (FC layer) for both datasets (SYSU-MM01 and RegDB).
Warmup learning rate strategy is applied to improve performance as [3]. For sampling, we
choose P and K both as 4 for both datasets. Margin ρ for Margin MMD-ID loss is set as
1.4 for both the datasets and ρ1 for HC-Tri loss is 0.3. The tradeoff parameters in total loss
equation of main paper: λ1,λ2,λ3 are set as 1, 0.25,2. We train our model on a single Nvidia
GTX 1080Ti gpu card for 60 epochs which takes ∼ 6 hours to train for SYSU-MM01 and ∼
1.3 hours for RegDB with all our losses.

3 Ablation Study

3.1 Effect of Random erasing augmentation
Random Erasing (RE) augmentation [11] is a well-known regularisation technique that helps
in improving the generalisation ability of the model. We incorporate RE with our total loss
formulation to get better performance. To ensure that the gain in performance is not because
of adding RE, we perform a set of experiments with RE and without RE to see the net effect
of adding RE. Table 1 shows the experiments with the corresponding rank-1 and mAP values.
It is evident from the last two rows that even without adding RE, our final Margin MMD-ID
loss along with Cross entropy and HC-Tri loss (row 7) performs comparably with the state
of the art models. Adding RE (row 8) gives the boost hence we use RE in our final model.
Also, adding RE with only Cross entropy loss (row 2) or with Cross entropy and HC-Tri loss
(row 4) doesn’t give much performance boost as RE on itself, cannot reduce the modality
gap.

3.2 Dataset Complexity: RegDB
RegDB [6] is collected from two well-aligned cameras (one visible and one thermal), com-
pared to six cameras for SYSU-MM01 (four visible and two thermal in both indoor and
outdoor environments). For RegDB evaluation, the dataset is randomly split into two parts,
one for training and one for testing. Thus, for each modality (e.g., visible), the samples
during training and testing are captured using the same camera. This eliminates significant
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Sr. No Method r1 mAP

1 C.E. 52.78 50.29
2 C.E. (w R.E.) 55.32 51.24

3 C.E. + HC-Tri 54.75 52.14
4 C.E. + HC-Tri (w R.E.) 60.94 55.39

5 C.E. + HC-Tri + MMD-ID 62.15 57.58
6 C.E. + HC-Tri + MMD-ID (w R.E.) 64.4 59.8

7 C.E. + HC-Tri + Margin MMD-ID 63.11 58.48
8 C.E. + HC-Tri + Margin MMD-ID (w R.E.) 66.75 62.25

Table 1: Effect of Random Erasing (R.E.) augmentation on different components in MMD-
ReID. Results provided for All-Search mode in SYSU-MM01 dataset

intra-modality variations (such as viewpoint and pose changes), usually caused when images
are captured using multiple cameras. Moreover, SYSU-MM01 (38,271) has more than four
times the number of samples present in the RegDB dataset (8,240), further increasing the
complexity of matching identities across modalities. The aforementioned reasons indicate
that RegDB is a much simpler dataset to operate on with less vulnerability to overfitting due
to train-test sampling similarities. Thus, applying MMD-ID on RegDB doesn’t correspond
to feature-degradation or overfitting and provides relatively decent performance compared to
evaluation on SYSU-MM01 (Table-3 in the main paper, row-2;3). We also empirically verify
this insight by generating the t-SNE plots for MMD-ID on the RegDB dataset. We observe
that both train and test features demonstrate high inter-class separation and intra-class com-
pactness (Fig.1). Fig.1 reveals that the features for each identity are easily separable and con-
sequently have little chance of overfitting. Lastly, recent state-of-the-art works [3] have also
observed a similar high performance on the RegDB dataset (compared to SYSU-MM01).

Figure 1: t-SNE visualisation on RegDB which shows the features are easily separable and
less prone to overfitting.
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3.3 Qualitative visualisation using T-SNE

Figure 2 shows the qualitative visualisation of the features after the BatchNorm layer, using
T-SNE plots [9]. The left side plot is for the features (belonging to test-data) extracted by
a model trained with only Cross entropy (CE) + HC-Tri loss, and the Right side plot is for
the model trained with our MMD ReID framework. It is clear from the Left side plot that
the visible and thermal features for a particular identity form separate clusters and are well
separated, which is undesirable. The visible and thermal clusters ideally should be compact
and as close as possible to avoid misclassifications. The right side plot has successfully
achieved these properties by bringing the same identity visible and thermal features closer in
feature space. Thus, the visual analysis also supports our MMD-ReID framework.

Figure 2: T-SNE visualisation on ten randomly sampled test identities (SYSU-MM01) for
CE+HC-Tri loss trained model (baseline) Vs Our Best (MMD-ReID) model. Different color
denotes different identities. Cross and circle marker denotes thermal and visible features
respectively.

3.4 Implementation details for Margin MMD-ID with existing
baselines:

To verify generalisation capability of MMD-ReID, we take three popular and open-sourced
baselines and add MMD-ID and Margin MMD-ID losses on them. The details about the
baselines and hyperparameters used are described below. Note that the table for accuracies
with MMD on different baselines is presented in main paper, Table 4.

AGW (Average Generalized mean pooling with Weighted triplet loss): Ye et al. in their
work [10] introduced a new powerful baseline for Person Re-ID. AGW proposed three ma-
jor modifications on top of the best practices discussed in [5]: Non-local attention blocks,
Generalized-mean (GeM) pooling layer, and Weighted regularized triplet loss. In line with
the standard setup, the MMD-ID and Margin MMD-ID losses are computed on features ex-
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tracted from the GeM layer while features extracted from the BatchNorm layer are used
during inference time. The margin (ρ) in Margin MMD-ID is set as 0.4 whereas all other
hyperparameters are kept the same as reported by [10].

DGTL (Dual-Granularity Triplet Loss): DGTL [4] utilizes sample-based and center-
based triplet loss in a hierarchical manner to encourage intra-class compactness and inter-
class discrimination at fine and coarse granularity levels simultaneously. This setup allows
achieving competitive performance without the need for aggregating local-level features
via architectural improvements. In accordance with previous experiments, we employ the
MMD-ID and Margin MMD-ID loss on the features extracted from the pooling layer (in the
fine granularity level branch). The margin (ρ) in Margin MMD-ID is set as 1.00 while all
other hyperparameters remain unchanged.

HcTri (Hetero-center Triplet Loss): Since traditional triplet-loss is prone to outliers and
often fails to converge, Liu et al. [3] in their work proposed a novel hetero-center triplet loss
that operates on a coarse granularity level. The Hc-Tri loss in a part-based person feature
learning framework leads to superior performance than the standard triplet loss. The Hc-Tri
loss is computed for each part-level feature strip as well as the final concatenated global
features. For a fair comparison with other baselines, we employ the MMD-ID and Margin
MMD-ID loss only on the concatenated global feature vector. The margin (ρ) in Margin
MMD-ID is set as 1.00 while all other hyperparameters are kept the same.

3.5 Computational cost analysis:
We create our batch with 2×PK images, where P is number of identities and K is number
of visible and thermal images. LMargin−MMD−ID requires computing PK(K − 1) pairwise
distances for same distribution term and P×K ×K distances for cross distribution term,
which after summing makes a total of PK[2K− 1] computations. This is comparable with
the computations needed for a batch with 2×PK images for a standard triplet loss [3] which
is 2PK(2K−1) for hardest positive sample mining and 2PK×2(P−1)K for hardest negative
sample mining. Also, Hc-Tri loss [3], for a batch requires P computations for positive and
2P×2(P−1) for negative term. Thus, computation wise, our loss is comparable to standard
Triplet loss. We also do a training time analysis and observe the hours needed to train a
model for 60 epochs for different setups. Table 2 shows that using MMD-ReID negligibly
increases the training time over C.E. and C.E. + HC-Tri.

Setup Training time
C.E. 5.45 hrs

C.E. + HC-Tri 5.81 hrs
MMD-ReID (All loss) 6 hrs

Table 2: Training time analysis on Nvidia GTX 1080Ti: SYSU-MM01
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