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A. Implementation Details

Training specifications We refer to Table 1, 2 & 3 to the training configurations of MONet,
IODINE and MulMON respectively. Note that 1) for IODINE adn MulMON that use iter-
ative inference modules, we apply LDS per iterative step to compute their ELBOs during
training, and 2) for all CompVAEs, we apply LDS only in their training times.

Model Architecture Specifications As discussed in the main paper, we use three ex-
isting CompVAE models as our baselines and build our contributions on top of these ar-
chitectures. It is important to use the same architectures as the that of the original papers.
However, we found it difficult to use a latent dimension of 64 as in [5] for the CLEVR-based
datasets as it trains too slow, over one week for one run on two RTX2080TI, we thus reduced
the dimension of IODINE to 16 for our IODINE. As constructing the proposed LDS prior
requires no model architecture design and architecture parameter tweaking, we refer to the
original papers of MONet [2], IODINE [5], and MulMON [6] for the architecture details.

Table 1: Training Configurations For MONet

TYPE THE TRAININGS OF MONET0 AND MONET+

OPTIMIZER RMSPROP

INITIAL LEARNING RATE η0 3e−4

BATCH SIZE 40 (UNIT: IMAGES)
LEARNING RATE AT STEP s N/A
TOTAL GRADIENT STEPS 600k
GRADIENT-NORM CLIPPING 5.0
LOG-NORMAL LIKELIHOOD STRENGTH 1.0
KL (GAUSSIAN PRIOR) STRENGTH β 0.5
KL (ATTENTION PRIOR) STRENGTH 0.5
LDS (MONET+ ONLY) STRENGTH 0.5
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Table 2: Training Configurations of IODINE0 and IODINE+

TYPE THE TRAININGS OF IODINE0 AND IODINE+

OPTIMIZER ADAM

INITIAL LEARNING RATE η0 1e−4

BATCH SIZE 8
LEARNING RATE AT STEP s ?max{0.1η0 +0.9η0 · (1.0− s/1e6),0.1η0}
TOTAL GRADIENT STEPS 600k
GRADIENT-NORM CLIPPING 5.0
INFERENCE ITERATIONS [5] 5
LOG-NORMAL LIKELIHOOD STRENGTH 1.0
KL (GAUSSIAN PRIOR) STRENGTH β 1.0
LDS (IODINE+ ONLY) STRENGTH 1.0
? : SAME SCHEDULER AS GQNS’.

Table 3: Training Configurations of MulMON0 and MulMON+

TYPE THE TRAININGS OF MULMON0 AND MULMON+

OPTIMIZER ADAM

INITIAL LEARNING RATE η0 2e−4

BATCH SIZE 8
LEARNING RATE AT STEP s ?max{0.1η0 +0.9η0 · (1.0− s/1e6),0.1η0}
TOTAL GRADIENT STEPS 600k
GRADIENT-NORM CLIPPING 5.0
INFERENCE ITERATIONS [5] 5
LOG-NORMAL LIKELIHOOD STRENGTH 1.0
KL (GAUSSIAN PRIOR) STRENGTH β 1.0
LDS (IODINE+ ONLY) STRENGTH 1.0
? : SAME SCHEDULER AS GQNS’.

B. CompVAE Rendering Process

Figure 1 shows the CompVAE rendering process we used to produce all qualitative results
presented in this paper. Importantly, we used softmax functions to compute the com-
positional probabilities of each components, i.e. the mixing probabilities in Eqn.(1),
to render the whole scene, and sigmoid functions to render independent objects. How-
ever, one might also see independent component rendering with other functions in the related
literature, e.g. IODINE [5] uses a linear mapping of xk to render independent components.
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Figure 1: Overview of a CompVAE rendering process. The rendering process starts by in-
putting a set of inferred latent object representations (Bottom left) into the generator network
gθ . The generator gθ outputs a raw mask (mlg

k ∈ RH×W×1) and a color pool (xk ∈ RH×W×3)
(Bottom middle). The decoder output is then passed into three different functions (Middle
row) to get different render results (Top row). All computations are defined pixel-wise but
executed in parallel.

C. Additional Results

C.1 Abalation Study

The ablation study focuses on two hyperparameters: 1) the standard deviation σ used in the
LDS prior (see Section 3.2 of the main paper) and 2) the number of object slots K. The
former relates to the precision of the similarity measure and the latter determines the size of
the similarity matrix constructed in the LDS computation, i.e. it relates to the scalability of
LDS. We do the ablation study with only MONet and on only the CLE-MV dataset for com-
putation efficiency. We select 4 different σ to train MONet and compare their performance
on the scene reconstruction and the scene factorization tasks. Figure 2 shows no significant
performance loss in tasks by changing σ from the default value, 0.1, to other values. A future
investigation will be further increasing σ until it is sufficiently close to a uniform distribution
and thus breaks the LDS prior. Moreover, the performance might get boosted in some cases.
For the object-slot quantity K, we first train MONet with K = 7 and K = 9 respectively and
test them with 7,9, 11, 15 object slots. Figure 2 shows: 1) the models trained with K = 7 and
K = 9 have very similar performance in both tasks and 2) testing with a different K does not
cause a significant performance drop.
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Figure 2: Ablation study results. Top left Scene decomposition performance vs. LDS prior
precision (σ ). Top right Scene decomposition performance vs. the number of object slots
used in training and testing (K). Bottom left Scene observation reconstruction performance
vs. LDS prior precision (σ ). Bottom right Scene observation reconstruction performance
vs. the number of object slots used in training and testing (K).

C.2 GENESIS on the CLE-MV Data
We tested GENESIS [4] on the CLE-MV data to assess how well the inference redundancy
problems are handled by the autoregressive model of GENESIS. The experiment was con-
ducted on top of the official implementation of GENESIS [1] with strict abidance of its
original hyperparameter configurations. However, as shown in Figure 3, GENESIS failed to
factorise CLE-MV scenes correctly—it treats a CLE-MV scene observation (i.e. an image)
as a big and flat object that contains all the content. As a result, it produces wrong image
segmentation. A possible reason could be that GENESIS represents the autoregressive con-
ditioning of object discovery in the latent space (i.e. zk |z1:k−1) instead of the image space
as that of MONet—a successive object mask conditions directly on all the previous obtained
masks (i.e. mk |m1:k−1). According to [3], this could introduce more severe global infor-
mation leaking issue. In general, future study is needed to better understand the practical
limitations and their causes in GENESIS.

C.3 Real-image Experiments
To demonstrate that the proposed LDS can efficiently perform duplicate suppression on real
images, we conducted comparison experiments between CompVAEs that are trained with
and without LDS priors on the a collected real-image dataset.

Real-image Dataset We created such dataset by randomly placing 2−4 cubes (of dif-
ferent colours) on white table top and taking photos with a webcam that is mounted on a
moving robot arm. We created 109 scenes in total and for each scene we captured 20−30
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Obs. Rec. Independent Component Generation Seg.

Figure 3: Qualitative results of GENESIS on the CLE-MV dataset.

Figure 4: Hardware platform for real-image dataset recording.

images from different viewing angles. We show the hardware platform setup in Figure 4.
Results Figure 5 shows that the original MONet0

?
infers redundant white table compo-

nents. Although MONet+ demonstrates a slight performance drop in handling occlusions
(e.g. renders the independent table component worse than MONet0

?
), it does suppress the

duplicate table finding issues of MONet0
?
. Also, we see that MONet+ produces cleaner

segmentation results than MONet0
?
. Compared with synthetic data, real images often come

from complex distributions and thus exhibit significant larger pixel variances (due to uncon-
trolled lighting, materials, etc.), complicating the training of a generative model. This also
explains why neither MONet0

?
nor MONet+ model the independent table (always partially

occluded) distribution properly. In conclusion, LDS is an effective addition to CompVAEs
on real data and can potentially serve as a useful tool in some real applications.
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Figure 5: Qualitative results of MONet on real images. Symbols “0?” and “+” tag models that
trained with and without LDS respectively. Yellow circles highlight duplicated or partially
duplicated components.
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