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1 Audio-Visual Preprocessing
One very crucial aspect of our recent exploration on audio-visual summary generation is the
preprocessing step. Unlike previous attempts we consider both audio and visual streams to
produce semantically meaningful yet diverse summaries for a given input video. Typical
frame level annotation score is deemed unsuitable for this. To ensure proper audio-visual
coherence we divide the sequence of data into segments of 3 seconds. This enables us to
capture sufficient audio information. After this step, an input video can be converted into a
sequence of shot level feature representations. For efficient feature extraction from the audio
sequence we need to divide them into meaningful segments and remove the unnecessary
intervals. For this, we define the following heuristic, also described in flowchart (Fig. 1).

1 def preprocess(old_list):
2 conc_list =[]
3 last =[0,0]
4 for i in old_list:
5 itr=[i[0],i[1]]
6 if last ==[0 ,0]:
7 if itr[1]−itr [0] >=3∗sr: # too big
8 conc_list.append(itr)
9 else:

10 last=itr
11 else:
12 if itr[0]−last [1] >1.5∗sr: # if gap between itr is big not a breathgap
13 conc_list.append(last)
14 last=itr
15 elif itr[1]−last [0] <=3∗sr: # if its a breathing gap & combined <= 3sr
16 last=[last[0],itr [1]]
17 elif itr[1]−last [0]>3∗sr:
18 conc_list.append(last)
19 last=itr
20 else:
21 print(error)
22 if last != [0,0]:
23 conc_list.append(last)
24 last =[0,0]
25

26 return conc_list
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Figure 1: A flow diagram of the preprocessing algorithm applied to the audio segments to
eliminate large breathing gaps and split them into consistent and equal lengths.

2 Dataset Annotation

We discuss the TVSum [4] and OVP dataset annotation statistics in this section. The existing
annotations were based on visual stimuli only thereby making themselves inappropriate for
a study involving a holistic audio-visual summary generation. TVSum was the first to curate
a collection of 50 videos and their shot-level importance scores obtained via crowdsourcing.
OVP contains videos from various genres with related and meaningful audio content, hence
this was considered to be a good benchmark dataset to study the adaptability of an audio-
visual summarization model. We chose to ignore another popular dataset SumMe [1] as it
does not contain meaningful audio information in the videos. As described in the paper we
follow a three pass annotation strategy to make sure that the scoring is done considering both
audio as well as visual information.

Fig. 2 presents the distribution of aggregated shot-level scores for each of the three cases
separately i.e. when audio-only, visual-only and audio-visual scores are provided. We notice
that the majority of shots are provided a score of 1 (least important) whereas, only a small
fraction is chosen as important shots (score 5) which are to be considered while generating
the summary. Fig. 3 demonstrates distribution of the aggregated shot-level scores for both
TVSum and OVP dataset.
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Figure 2: Distribution of the shot-level Importance scores for TVSum and OVP datasets
respectively based on corresponding modalities.
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Figure 3: Distribution of the weighted shot-level Importance scores for TVSum and OVP
datasets respectively.

3 Training Details

3.1 Training with Policy Gradient
We follow the REINFORCE algorithm [5] to compute the derivative of the objective function
J(θ) w.r.t. the parameters θ as:

∇θ J(θ) = Epθ (a1:T )

[
R(S)

T

∑
t=1

∇θ logπθ (at | ht)

]
(1)

where at is the action taken by AudViSum at time t and ht represents the hidden state in
BiLSTM.

For the mth model we take the average gradient by running the agent for Nm episodes
on the same video. It is computationally efficient as it bypasses the calculations involved to
deal with expectation over high dimensional action sequences.

∇θmJ(θm)≈
1

Nm

Nm

∑
e=1

T

∑
t=1
Re∇θm logπθm (at | ht) (2)

Re is the reward for the eth episode. We can refer to Eq. 2 as the episodic REINFORCE
algorithm. The gradient in Eq. 2 might contain high variance resulting in difficulties in
model convergence. To alleviate this problem, we subtract the reward by a constant baseline
b. Here, b is computed as the moving average of rewards. The revised gradient becomes:

∇θmJ(θm)≈
1

Nm

Nm

∑
e=1

T

∑
t=1

(Re−b)∇θm logπθm (at | ht) (3)

3.2 Implementation Details
For training the models we use a Learning Rate (LR) of 0.001, Momentum 0.9 with Stochas-
tic Gradient Descent (SGD) optimizer. The proposed method is implemented on a PC with
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Intel Xeon E5-2620v3 with 128 GB RAM and a NVIDIA GTX 1080Ti GPU with 12 GB
memory. Training is run till 50 epochs unless reward converges. In which case we execute
early stopping. The dimension of hidden states in the BiLSTM is set to 384 for audio and
200 for image sequences.

3.3 Regularizer

As selecting more shots increases the overall reward, we apply a regularizer on the proba-
bility distributions p1:T to constrain the percentage of shots selected for the summary. We
minimize the following term as proposed by [2] during training:

Lpercentage =

∥∥∥∥∥ 1
T

T

∑
t=1

pt − ε

∥∥∥∥∥
2

(4)

where ε controls the fraction of shots to be selected. Additionally, we use `2 regulariza-
tion on the weight parameters θ to avoid overfitting:

Lweight = ∑
i, j

θ
2
i, j (5)

4 Results

We produce n summaries initially from which top-3 are chosen for final evaluation. It is
experimentally observed that the best summary is most likely to be contained within top-
3 summaries. Fig. 4 demonstrates the top-3 summaries produced by our self-supervised
model for two of the videos. The generated summaries are diverse when compared against
each other. Duration of the produced summaries are roughly 15% to that of the input videos.

As the corresponding audio summaries can not be presented in the paper, we share some
sample summaries here. We will also release the code used to carry out the experiments to
further facilitate reproducibility of our work.
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Figure 4: Example videos and their top-3 summaries produced by AudViSumcontrastive.

5 Evaluation Metric
Otani et al. [3] have experimentally shown that Kendall’s τ and Spearman’s ρ correlation
coefficients are more robust compared to a classical F1-score when it comes to measuring
the strength of correlation between predicted and human annotated video summaries. Since
our exploration follows a very similar trajectory we chose to incorporate their findings here.
Following their study we use these two metrics for performance evaluation in our paper.
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