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1 Extended Analysis of Ablation Studies
Extending the analysis presented in the main paper, we examine the impact of using fourier
discriminator network during training by analyzing the fourier spectrum of enhanced images.
For this, we choose five different training configurations,

• (I) Two stage network with 5 RDB blocks and proposed cMSFE-A, referred as Base-
line.

• (II) Baseline trained with fourier discriminator using only magnitude from gray scale
version of enhanced image.

• (III) Baseline trained with complete fourier spectrum from gray scale version of en-
hanced image.

• (IV) Baseline trained with gray scale based fourier discriminator and RGB based
PatchGAN [12] discriminator.

• (V) Replacing gray scale based fourier discriminator with RGB based, wherein per
channel fourier transform is calculated and used for training the baseline.

From qualitative results summarized in Fig. 1, we can observe images captured in low
illumination content to have a perceivable difference in magnitude spectrum, specifically
along the higher frequencies that represent edge information. Subsequently, we observe
baseline algorithm to improve image quality as observable from magnitude spectrum (Fig. 1
(I)), which is improved if magnitude spectrum is utilized as adversarial training process (Fig.
1 (II)). While it improves structural consistency of enhanced image with respect to ground
truth, the quantum is irregular in high frequency regions resulting in sharp lines visible in
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IN (NIQE-5.01) I (NIQE-4.07) II (NIQE-3.99) III (NIQE-2.90) IV (NIQE-2.78) V (NIQE-3.34) GT (NIQE-3.87)

Figure 1: Magnitude and Phase information of Images enhanced by frameworks following different
training methodologies.

magnitude spectrum. This irregular increase can be attributed to the absence of phase infor-
mation in the optimization process, that can be overcome by utilizing the complete frequency
information during optimization (Fig. 1 (III)). Using phase spectrum ensures the magnitude
plot of enhanced image is balanced while ensuring higher naturalness of images, as mea-
sured using NIQE. Following prior works involving GANs, we are motivated to examine if
using PatchGAN improves image quality further or not. From the magnitude spectrum and
NIQE scores (Fig. 1 (IV)) we observe that magnitude spectrum that is sharper and balanced,
while NIQE is lower, demonstrating the images to be more natural. We believe this to arise
from the method to classify patches within images as real or fake, thus ensuring more natu-
ral enhanced images. Compelled by this, we explore if calculating FFT per channel of RGB
images to result in more natural images, however, we observe a higher NIQE score and a
dim image (compared to enhanced images generated by other approaches), convincing us to
conclude that Fourier spectrum of grayscale images is more beneficial. Hence we demon-
strate that Fourier discriminator ensures higher structural details whereas PatchGAN ensures
a more natural image. We proceed with this configuration to compare performance with
SoTA algorithms on sRGB and RAW images while examining its practicality in real-world
applications.

2 Extended Performance Comparison with SoTA

2.1 Image Enhancement on sRGB Images
While we evaluated the performance of SoTA LLIE algorithms on commonly used LOL
dataset, we witnessed a lack of diversity within evaluation scenarios that are more likely to
be encountered in deployment settings (e.g., multiple illumination sources, effects of clouds
and shadows) as well as illumination conditions (overcast, night). Hence we additionally
evaluated the performance of SoTA algorithms on SICE dataset that contains both moderate
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(-1 ev) to extreme (-3 ev) low illumination conditions while also capturing moderate (+1 ev)
to high (+3 ev) high exposure conditions, providing a diverse range of evaluation scenarios.
We summarize qualitative results of different SoTA algorithms in moderately illuminated
conditions (-1 ev1, Fig. 2, Fig. 5 along with extremely dark conditions (-3 ev, Fig. 3, Fig. 4)
from LOL and SICE datasets and summarize the quantitative performance in Tab. 1. While
all algorithms suffer consistent drop when evaluated on images captured at -1ev setting (Tab.
1), the performance drop (LPIPS and SSIM) was more significant in images captured at -3ev.
We believe this arises from extreme illumination variation wherein certain regions are under-
exposed, and local illumination sources illuminate certain regions unevenly. These scenarios
require region-specific enhancement, resulting in enhancement inconsistency observed in
SoTA algorithms (such as RetinexNet, URIE) constructed using the assumption of a single
global illumination model.

Furthermore a visual inspection of enhanced images (Fig. 2, Fig. 3, Fig. 4, Fig. 5) from
SoTA algorithms across different settings reveal several limitations, specifically in terms of
changing image properties and features within enhanced images. RetinexNet, while enhanc-
ing images, also stylizes them, resulting in large NIQE (indicative of deteriorated perceptual
quality) and low SSIM (reduced structural consistency) value. Apart from image stylization
issues, we also observe presence of noise in results generated by RetinexNet, GLAD, and
DSLR. On a closer inspection of results from KinD and MBLLEN, we observe the loss in
texture and color information. While results from DALE are affected by contrast variation,
DLN and URIE suffer from reduced image sharpness arising due to poor edge recovery.
These observations highlight the limitations of current SoTA algorithms towards noise am-
plification, inaccurate recovery of texture, color, and edge information. However, we observe
a majority of algorithms achieving visually pleasing images compared to the ground truth,
which is corroborated by a lower NIQE (compared to ground truth) and LPIPS score, indi-
cating these images are more natural.

The proposed approach achieves a higher SSIM score and lower NIQE and LPIPS scores
compared to prior algorithms, thereby representing better texture and color information while
ensuring accurate edge consistency that is visually corroborated by enhanced images. We at-
tribute this performance to be driven by using an adversarial Fourier network during the
training cycle that aided the underlying network to enhance images while suppressing noise.
In terms of PSNR score comparison, while it is commonly used for low level image pro-
cessing tasks such as dehazing, deblurring, etc., it cannot be solely relied upon in LLIE as
in some cases (DLN, KinD and ours), the enhanced images are more visually pleasing than
corresponding ground truth.

2.2 Image Enhancement on RAW Images

We now examine the performance of SoTA algorithms on RAW images to evaluate if they
could incorporate the functionality of camera-ISP and benefit from raw signals instead of
sRGB images. To ensure that SoTA LLIE algorithms work seamlessly on demosaiced im-
ages and generate sRGB images that are subsequently up-scaled using bicubic interpolation,
we use Sony-SID dataset and choose KinD, GLAD, EnlightenGAN as they are compara-
tively shallow networks, thus requiring lower computational resources to be retrained on
demosaiced images. These algorithms are retrained following their respective optimization
processes and evaluated with SoTA learning based ISP such RAW2RGB-GAN [46], TENet
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Input (5.01/0.46) DALE [19] (6.67/0.35) DLN [35] (2.73/0.29) DSLR [21] (4.80/0.64)

EnlightenGAN [13] (3.42/0.29) GLAD [37] (5.18/0.38) KinD [45] (2.94/0.27) MBLLEN [26] (2.84/0.39)

RetinexNet [39] (8.49/0.38) URIE [33] (3.62/0.43) AFNet (2.91/0.18) GT (3.87/-)

Figure 2: Performance of SoTA algorithms on image from LOL dataset. Numbers in brackets represent
NIQE and LPIPS score respectively.

Input (4.39/0.39) DALE [19] (6.12/0.51) DLN [35] (3.34/0.44) DSLR [21] (3.42/0.69)

EnlightenGAN [13] (3.01/0.50) GLAD [37] (3.52/0.47) KinD [45] (3.33/0.44) MBLLEN [26] (3.10/0.47)

RetinexNet [39] (3.99/0.52) URIE [33] (3.55/0.49) AFNet (2.18/0.28) GT (2.49/-)

Figure 3: Performance of SoTA algorithms on extremely dark image from SICE dataset captured at
-3ev setting. Numbers in brackets represent NIQE and LPIPS score respectively.

[28], PyNet [11], AWNet [8], as well as RAW image based enhancement algorithms such as
Rawpy 2, SID [1]. From quantitative results in Tab. 2, we observe comparable performance

2https://letmaik.github.io/rawpy/api/index.html
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Input (2.44/0.30) DALE [19] (2.61/0.45) DLN [35] (2.69/0.45) DSLR [21] (2.83/0.65)

EnlightenGAN [13] (2.32/0.44) GLAD [37] (2.68/0.43) KinD [45] (2.75/0.43) MBLLEN [26] (1.97/0.46)

RetinexNet [39] (4.95/0.47) URIE [33] (2.08/0.47) AFNet (2.17/0.34) GT (2.91/-)

Figure 4: Performance of SoTA algorithms on extremely dark image from SICE dataset captured at
-3ev setting. Numbers in brackets represent NIQE and LPIPS score respectively.

Input (2.50/0.28) DALE [19] (2.90/0.27) DLN [35] (2.42/0.33) DSLR [21] (3.35/0.69)

EnlightenGAN [13] (2.32/0.40) GLAD [37] (2.50/0.33) KinD [45] (2.40/0.29) MBLLEN [26] (2.89/0.43)

RetinexNet [39] (3.38/0.33) URIE [33] (2.51/0.40) AFNet (1.75/0.10) GT (2.91/-)

Figure 5: Performance of SoTA algorithms on moderately dark image from SICE dataset captured at
-1ev setting. Numbers in brackets represent NIQE and LPIPS score respectively.

Citation
Citation
{Kwon, Kim, and Kwon} 2020

Citation
Citation
{Wang, Liu, Siu, and Lun} 2020

Citation
Citation
{Lim and Kim} 2020

Citation
Citation
{Jiang, Gong, Liu, Cheng, Fang, Shen, Yang, Zhou, and Wang} 2019

Citation
Citation
{Wang, Wei, Yang, and Liu} 2018{}

Citation
Citation
{Zhang, Zhang, and Guo} 2019{}

Citation
Citation
{Lv, Lu, Wu, and Lim} 2018

Citation
Citation
{Wei, Wang, Yang, and Liu} 2018

Citation
Citation
{Son, Kang, Kim, Cho, and Kwak} 2020

Citation
Citation
{Kwon, Kim, and Kwon} 2020

Citation
Citation
{Wang, Liu, Siu, and Lun} 2020

Citation
Citation
{Lim and Kim} 2020

Citation
Citation
{Jiang, Gong, Liu, Cheng, Fang, Shen, Yang, Zhou, and Wang} 2019

Citation
Citation
{Wang, Wei, Yang, and Liu} 2018{}

Citation
Citation
{Zhang, Zhang, and Guo} 2019{}

Citation
Citation
{Lv, Lu, Wu, and Lim} 2018

Citation
Citation
{Wei, Wang, Yang, and Liu} 2018

Citation
Citation
{Son, Kang, Kim, Cho, and Kwak} 2020



6 SHYAM, SENGAR, YOON, KIM: LIGHTWEIGHT HDR CAMERA ISP

Table 1: Performance Evaluation of different illumination conditions on sRGB images from SICE
dataset.

Algorithm SICE -3ev SICE -1ev SICE 1ev SICE 3ev
PSNR / SSIM NIQE / LPIPS PSNR / SSIM NIQE / LPIPS PSNR / SSIM NIQE / LPIPS PSNR / SSIM NIQE / LPIPS

Input 7.32 / 0.21 4.34 / 0.46 9.88 / 0.46 3.49 / 0.32 7.18 / 0.51 5.38 / 0.49 5.81 / 0.26 7.13 / 0.73
DALE 16.39 / 0.53 4.61 / 0.45 17.82 / 0.59 2.77 / 0.35 12.60 / 0.57 2.41 / 0.33 8.90 / 0.53 2.34 / 0.39
DLN 17.93 / 0.57 2.72 / 0.45 16.44 / 0.60 2.32 / 0.36 14.75 / 0.60 2.25 / 0.32 10.84 / 0.58 2.35 / 0.36
DSLR 15.43 / 0.41 3.62 / 0.65 14.53 / 0.48 2.95 / 0.57 11.29 / 0.51 2.75 / 0.53 8.60 / 0.49 2.67 / 0.54
EnlightenGAN 16.17 / 0.55 2.65 / 0.47 15.49 / 0.59 2.37 / 0.38 12.63 / 0.59 2.37 / 0.36 9.71 / 0.55 2.60 / 0.38
GLAD 17.74 / 0.56 2.87 / 0.47 17.78 / 0.61 2.49 / 0.36 17.64 / 0.64 2.42 / 0.33 15.31 / 0.63 2.36 / 0.37
KinD 16.72 / 0.54 2.92 / 0.46 17.64 / 0.60 2.44 / 0.35 14.78 / 0.60 2.45 / 0.32 10.62 / 0.57 2.66 / 0.35
MBLLEN 15.36 / 0.50 2.77 / 0.47 15.48 / 0.53 2.64 / 0.39 14.31 / 0.56 2.72 / 0.38 12.75 / 0.56 3.07 / 0.44
RetinexNet 17.18 / 0.51 3.85 / 0.52 14.78 / 0.52 3.46 / 0.41 12.97 / 0.55 3.13 / 0.35 10.14 / 0.54 2.93 / 0.38
URIE 17.91 / 0.57 2.78 / 0.49 17.03 / 0.59 2.21 / 0.40 14.91 / 0.60 2.30 / 0.36 11.75 / 0.57 2.48 / 0.39
Ours 19.48 / 0.67 2.04 / 0.21 20.79 / 0.71 1.57 / 0.18 18.12 / 0.75 3.40 / 0.31 16.63 / 0.84 3.96 / 0.23

Table 2: Performance Evaluation of different illumination conditions on RAW images from SID-Sony
and ELD datasets.

Algorithm SID-Sony ELD-Sony (RAW) ELD-Sony (sRGB)
PSNR / SSIM NIQE / LPIPS PSNR / SSIM NIQE / LPIPS PSNR / SSIM NIQE / LPIPS

Rawpy 20.17 / 0.53 7.07 / 0.58 21.02 / 0.61 5.54 / 0.47 -
EnlightenGAN 24.27 / 0.64 4.68 / 0.53 25.98 / 0.87 3.71 / 0.14 18.98 / 0.69 3.62 / 0.38
RAW2RGB-GAN 23.55 / 0.78 4.00 / 0.71 24.08 / 0.71 4.20 / 0.34 -
KinD 26.91 / 0.73 4.10 / 0.39 25.00 / 0.81 3.43 / 0.28 18.40 / 0.76 3.43 / 0.28
GLAD 27.11 / 0.82 3.86 / 0.39 25.25 / 0.87 3.48 / 0.18 20.25 / 0.78 3.48 / 0.24
SID 28.88 / 0.78 4.39 / 0.43 24.89 / 0.71 4.96 / 0.33 -
TENet 24.17 / 0.73 3.18 / 0.31 23.63 / 0.74 5.76 / 0.31 -
PyNet 25.01 / 0.69 3.79 / 0.34 24.08 / 0.77 4.04 / 0.20 -
PyNet-CA 24.24 / 0.64 4.02 / 0.41 21.98 / 0.72 4.02 / 0.29 -
AWNet 25.09 / 0.66 3.98 / 0.39 23.49 / 0.77 5.76 / 0.38 -
Ours 27.67 / 0.84 3.94 / 0.37 25.75 / 0.83 3.98 / 0.24 20.72 / 0.83 3.19 / 0.23

between sRGB and RAW image enhancement algorithms (Fig. 6). Furthermore we observe
learning based algorithms to generate visually pleasing images with lower noise and lower
NIQE scores, compared to traditional ISP mechanism represented by Rawpy that generates
noisy image. This is representative of issues faced by traditional camera-ISP in low illumi-
nation conditions. We compare the enhanced and processed images with ground truth that is
captured in well illuminated condition.

One noticeable observation was that the performance of these algorithms surpassed their
corresponding sRGB models, hence to examine if it is caused by camera-ISP or change in
the distribution of images, we use models trained on sRGB images from LOL and evaluate
the performance on the ELD dataset (ELD-Sony). From the quantitative results in Tab. 2,
we summarize that nonlinearities caused by camera-ISP indeed affects the performance of
LLIE algorithms. As we are comparing performance of LLIE algorithms on sRGB and RAW
images, we donot require to observe performance of learning based ISP networks on sRGB
images.

3 Practical Implications of IE algorithms in Real-World
Scenarios

We now explore practical applications of current image enhancement algorithms in real
world scenarios such as object detection and semantic segmentation. As there lacks a paired
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Input (4.81) Rawpy (7.81) EnlightenGAN [13] (4.87) GLAD [37] (4.25)

KinD [45] (4.47) SID [1] (4.33) AFNet (3.91) GT (3.53)

Figure 6: Performance of SoTA algorithms on RAW image from ELD dataset. Numbers in brack-
ets represent NIQE scores, wherein the ground truth is represented by the JPEG image generated by
onboard camera-ISP.

dataset diverse enough to capture and represent all illumination conditions, while providing
different label attributes, we customize cycle-gan algorithm to translate images present in
benchmark datasets to capture different extreme illumination conditions while sharing the
same labels. Our modifications are inspired by recent developments in efficiently training
GAN based algorithms such as multi-scale discriminators proposed in Pix-to-Pix HD [36],
Augmentation [14], Self Attention [44] and Contrastive Learning [15] with the complete
pipeline summarized in Fig. 7, with qualitative results presented in Fig. 8. To evaluate
the quality of translated images, we compare the performance of with original CycleGAN
and CoMoGAN [27] that represents the best algorithm for performing image translation by
modeling the complete illumination range and providing a control parameter for varying the
illumination in an image.

We train the proposed cyclegan for 10 epochs, using similar settings as original cyclegan
framework and utilizing and JOL [32] and BDD100K dataset [42] for unpaired training.
We donot train the modified network extensively as we require different light sources that
are present in generated images. Since these images are representative of real conditions, we
leverage this imperfect network to analyze the quality of enhanced images and its subsequent
effect on underlying algorithms in presence of multiple local illumination sources.

Subsequently we use this modified CycleGAN to generate low illumination version of
cityscapes [7] and COCO-val [22] datasets and analyze the performance of SoTA seman-
tic segmentation and object detection algorithms available in mmseg [6] and mmdetection
[3] software packages. Furthermore we also utilize the Exdark dataset [25] to evaluate per-
formance of object detectors in varying illumination conditions using models pretrained on
COCO dataset. We donot retrain these algorithms as the objective is to quantify the impact
of varying illumination conditions on pretrained models and examine if improving image
quality improves performance or not.
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Generated   Image for
Domain B

Image from 
Domain A

Reconstructed Image for
Domain A

Image from
Domain B

Real / Fake

Generator 1 Generator 2

Multi-Scale Discriminator

Perceptual Loss

L1 Loss

Figure 7: Overview of the modified CycleGAN

Table 3: Performance of SoTA object detection algorithms in low-light and enhanced images using
ExDark Dataset.

Method B.B. Baseline EnlightenGAN DLN GLAD RetinexNet AFNet
AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

HTC [2] R-50 0.308 0.619 0.284 0.573 0.285 0.574 0.277 0.558 0.210 0.440 0.303 0.507
GFL [20] R-50 0.298 0.599 0.276 0.556 0.273 0.552 0.262 0.530 0.196 0.408 0.315 0.590
PAA [16] R-50 0.309 0.618 0.290 0.580 0.288 0.576 0.280 0.561 0.213 0.439 0.299 0.471
Auto Assign [47] R-50 0.290 0.592 0.271 0.554 0.271 0.552 0.262 0.533 0.196 0.407 0.290 0.431
D. DETR [48] R-50 0.300 0.609 0.280 0.569 0.281 0.568 0.272 0.548 0.211 0.432 0.288 0.438
Faster RCNN [30] R-50 0.278 0.584 0.254 0.541 0.252 0.536 0.244 0.519 0.179 0.394 0.273 0.501
RetineNet [23] R-50 0.290 0.593 0.266 0.552 0.264 0.546 0.252 0.524 0.188 0.403 0.296 0.492
SCNet [34] R-50 0.311 0.627 0.290 0.586 0.287 0.581 0.277 0.559 0.217 0.452 0.289 0.663
SSD-300 [24] VGG16 0.254 0.526 0.246 0.505 0.249 0.509 0.240 0.493 0.170 0.358 0.253 0.395
YOLOF [5] R-50 0.300 0.596 0.277 0.553 0.274 0.548 0.262 0.526 0.170 0.358 0.293 0.454
Yolov3-320 [29] DarkNet-53 0.246 0.518 0.242 0.508 0.246 0.517 0.237 0.498 0.167 0.358 0.273 0.417
DANet [31] R-50 0.319 0.631 0.303 0.599 0.299 0.595 0.289 0.576 0.221 0.451 0.307 0.514

We summarize the quantitative results of SoTA object detection algorithms in Tab. 3 and
Tab. 4 on ExDark and COCO-val datasets respectively, while demonstrating the qualitative
performance in Fig. 9. Furthermore we utilize the JOL [32] dataset that captures object
and road information captured in dynamic illumination conditions such as driving across
cities and examine performance of object detection algorithms in different conditions, with
qualitative results summarized in Fig. 10. Similarly we perform the same experiment on low
illuminated translated images from cityscapes datasets with quantitative results summarized
in Tab. 5 and qualitative results on low illuminated images and enhanced images in Fig. 11.

From these results we can summarize that low illumination conditions indeed affects
the performance of SoTA algorithms whereas enhanced images can improve performance
of these algorithms as summarized from results on ExDark dataset. While we observe per-
formance of SoTA Object Detection and Semantic Segmentation algorithms to improve on
enhanced images on COCO and Cityscapes datasets, the performance doesnt reach the base-
line performance. We believe this to arise from image stylization within original images as
a consequence of image translation, that is consistent across all image translation networks.
However we do observe performance improvement when images are enhanced and distor-
tions by lightening conditions minimized. Hence we can conclude that image enhancement
algorithm can improve performance of SoTA perception algorithms.
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Input CycleGAN CoMoGAN Ours
Cityscapes-Dataset

COCO-Dataset

Figure 8: Visual Analysis of Images generated using different Image Translation Algorithms

Table 4: Performance of SoTA object detection algorithms in low-light and enhanced images using
COCO Dataset.

Method Baseline Dark EnlightenGAN DLN GLAD RetinexNet AFNet
AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

HTC [2] 0.433 0.622 0.273 0.417 0.279 0.423 0.273 0.417 0.276 0.422 0.244 0.378 0.279 0.426
GFL [20] 0.429 0.612 0.257 0.393 0.266 0.405 0.257 0.393 0.262 0.400 0.232 0.357 0.264 0.402
PAA [16] 0.433 0.610 0.269 0.403 0.277 0.412 0.269 0.403 0.273 0.410 0.238 0.360 0.274 0.409
Auto Assign [47] 0.404 0.596 0.253 0.395 0.261 0.406 0.253 0.395 0.258 0.404 0.224 0.355 0.260 0.404
D. DETR [48] 0.468 0.663 0.290 0.431 0.292 0.431 0.290 0.431 0.293 0.437 0.256 0.385 0.298 0.442
Faster RCNN [30] 0.384 0.590 0.228 0.376 0.234 0.386 0.228 0.376 0.234 0.384 0.201 0.334 0.232 0.382
RetinaNet [23] 0.374 0.567 0.222 0.359 0.231 0.369 0.222 0.359 0.227 0.366 0.194 0.317 0.228 0.367
SCNet [34] 0.445 0.641 0.293 0.454 0.300 0.460 0.293 0.454 0.295 0.455 0.262 0.411 0.298 0.460
SSD-300 [24] 0.256 0.438 0.172 0.307 0.179 0.315 0.172 0.307 0.177 0.313 0.149 0.267 0.174 0.309
YOLOF [5] 0.375 0.570 0.240 0.385 0.246 0.394 0.240 0.385 0.245 0.393 0.205 0.335 0.244 0.393
Yolov3-320 [29] 0.279 0.491 0.195 0.354 0.197 0.358 0.195 0.354 0.197 0.358 0.163 0.301 0.194 0.354
DANet [31] 0.423 0.612 0.288 0.438 0.291 0.443 0.288 0.438 0.291 0.444 0.253 0.390 0.293 0.445
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Figure 9: Qualitative Performance of SoTA object detectors on Low Light and Enhanced Images.
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Figure 10: Qualitative Performance of SoTA image enhancement algorithms on images captured in
wild and subsequent effect on SoTA object detection algorithms.
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DeepLabv3 + DNL OCRNet
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Figure 11: Qualitative Performance of SoTA Semantic Segmentation Algorithms on Low Light and
Enhanced Images.
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Table 5: Semantic segmentation results for Cityscapes Dataset under Diverse Conditions
Method B.B. Baseline Low Light EnlightenGAN RetinexNet DLN GLAD AFNet
ANN [49] R-50 0.773 0.573 0.470 0.331 0.418 0.457 0.590
APCNet [9] R-50 0.788 0.590 0.477 0.359 0.433 0.471 0.554
CCNet [10] R-50 0.776 0.580 0.497 0.356 0.447 0.477 0.542
DeepLabV3+ [4] R-50 0.798 0.629 0.544 0.415 0.503 0.526 0.669
DNL [41] R-50 0.792 0.608 0.480 0.373 0.454 0.471 0.559
PointRend [18] R-50 0.763 0.576 0.493 0.347 0.453 0.484 0.558
NonLocal Net [38] R-50 0.781 0.567 0.487 0.338 0.418 0.469 0.530
PFPN [17] R-50 0.744 0.561 0.458 0.330 0.438 0.469 0.632
OCRNet [43] H-W18 0.793 0.653 0.565 0.395 0.525 0.574 0.660
CGNet [40] R-50 0.682 0.499 0.409 0.297 0.374 0.371 0.601
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