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A Datasets
In this paper we conducton experiments on the following datasets:
300W: 300W [22] is a 2D face alignment dataset constructed by concatenating and then
manually re-anotating with 68 points the images from LFPW [1], AFW [39], HELEN [17]
and iBUG [23]. There are two commonly used train/test splits. Split I: uses 3837 images
for training and 600 for testing and Split II that uses 3148 facial images for training and 689
for testing. The later testset comprises of two subsets: common and challenge. Most of the
images present in the dataset contain faces found in frontal or near-frontal poses.
300W-LP: 300W-LP [40] is a synthetically generated dataset formed by warping into large
poses the images from the 300W dataset. This dataset contains 61,125 pre-warped images
and is used for training alone.
Menpo: Menpo [34] is a 2D face alignment dataset that annotates the images using 2 dif-
ferent configurations depending on the pose of the faces. The near frontal facial images are
annotated using the same 68 points configuration used for 300W, while the rest using 39
points. In this work, we trained and evaluated on the 68-point configuration.
COFW: The Caltech Occluded Faces in the Wild (COFW) [3] dataset contains 1,345 training
and 507 testing facial images captured in real world scenarios and annotated using 29 points.
The images were later on re-annotated in [13] using the same 68-point configuration as in
300W.
AFLW: The Annotated Facial Landmarks in the Wild (AFLW) [14] dataset consists of
20,000 training images and 4386 testing images, out of which 1314 are part of the Frontal
subset. All images are annotated using a 19 point configuration.
WFLW: Wider Facial Landmarks in-the-wild (WFLW) [29] consists of 10,000 images, out
of which 7,500 are used for training while the rest are reserved for testing. All images
are annotated using a 98 point configuration. In addition to landmarks, the dataset is also
annotated with a set of attributes.
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300VW: 300VW [24] is a large scale video face alignment dataset consisting of 218,594
frames distributed across 114 videos, out of which 50 are reserved for training while the rest
for testing. The test set is further split into 3 different categories (A, B an C) with C being the
most challenging one. We note that due to the semi-supervised annotation procedure some
images have erroneous labels.

B Metrics
Depending on the dataset, the following metrics were used throughout this work:
Normalized Mean Error (NME). The point-to-point normalized Euclidean distance is the
most widely used metric for evaluating the accuracy of a face alignment method and is de-
fined as: NMEtype(%) = 1

N ∑
N
k vk

yk−ŷk
dtype

×100, where yk denotes the ground truth landmarks
for the k-th face, ŷk its corresponding predictions and dtype is the reference distance by which
the points are normalized. vk is a visibility binary vector, with values 1 at the landmarks
where the ground truth is provided and 0 everywhere else.

Depending on the testing protocol, the NME type (i.e. how it’s computed and defined)
will vary. In this paper, we distinguish between the following types: dic – computed as
the inter-occular distance [22], dbox – computed as the geometric mean of the ground truth
bounding box [2] d =

√
(wbbox · hbbox), and finally ddiag – defined as the diagonal of the

bounding box.
Area Under the Curve(AUC): The AUC is computed by measuring the area under the curve
up to a given user defined cut-off threshold of the cumulative error curve. Compared with
NME that simple takes the average, this metric is less prone to outliers.
Failure Rate (FR): The failure rate is defined as the percentage of images the NME of which
is bigger than a given (large) threshold.

C Additional comparisons with state-of-the-art
In addition to the comparisons reported in the main paper here in we show how our method
performs against an additional set of methods (Tables 1, 2, 3, 3, 4).
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Table 1: Comparison against the state-of-the-art on WFLW in terms of NMEinter−ocular,
AUC10

ic and FR10
ic .

Method NMEic(%) AUC10
ic FR10

ic (%)

ESR [4] 11.13 0.277 35.24
SDM [33] 10.29 0.300 29.40
CFSS [37] 9.07 0.366 20.56
DVLN [31] 6.08 0.456 10.84

LAB (w/B) [30] 5.27 0.532 7.56
Wing [12] 5.11 0.554 6.00

MHHN [27] 4.77 - -
DeCaFa [6] 4.62 0.563 4.84
AVS [20] 4.39 0.591 4.08

AWing [28] 4.36 0.572 2.84
LUVLi [16] 4.37 0.577 3.12
GCN [18] 4.21 0.589 3.04

Ours 3.72 0.631 1.55

Table 2: Comparison against the state-of-the-art on the AFLW-19 dataset.

Method
NMEdiag NMEbox AUC7

box

Full Frontal Full Full

RCPR [3] 3.73 2.87 - -
CFSS [37] 3.92 2.68 - -
CCL [38] 2.72 2.17 - -

DAC-CSR [11] 2.27 1.81 - -
LLL [21] 1.97 - - -

CPM+SRB [9] 2.14 - - -
SAN [8] 1.91 1.85 4.04 54.0

DSNR [19] 1.85 1.62 - -
LAB (w/o B) [30] 1.85 1.62 - -

HR-Net [25] 1.57 1.46 - -
Wing [12] - - 3.56 53.5
KDN [5] - - 2.80 60.3

LUVLi [16] 1.39 1.19 2.28 68.0
MHHN [27] 1.38 1.19 - -

Ours 1.31 1.12 2.14 70.0
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Table 3: Comparison against state-of-the-art on the 300W Common, Challenge and Full
datasets (i.e. Split II).

Method
NMEinter−occular

Common Challenge Full

ODN [36] 3.56 6.67 4.17
CPM+SRB [9] 3.28 7.58 4.10

SAN [8] 3.34 6.60 3.98
AVS [20] 3.21 6.49 3.86
DAN [15] 3.19 5.24 3.59

LAB (w/B) [30] 2.98 5.19 3.49
Teacher [7] 2.91 5.91 3.49

DU-Net [26] 2.97 5.53 3.47
DeCaFa [6] 2.93 5.26 3.39
HR-Net [25] 2.87 5.15 3.32

HG-HSLE [41] 2.85 5.03 3.28
Awing [28] 2.72 4.52 3.07
LUVLi [16] 2.76 5.16 3.23

Ours 2.61 4.13 2.94

Table 4: Comparison against the state-of-the-art on the COFW-29 dataset.

Method NMEic(%) FR10
ic (%)

Human 5.60 -
ESR [4] 11.20 36.0

RCPR [3] 8.50 20.00
HPM 7.59 13.00

CCR [10] 7.03 10.90
DRDA [35] 6.49 6.00
RAR [32] 6.03 4.14

DAC-CSR [11] 6.03 4.73
LAB (w/o B) [30] 5.58 2.76

Wing [12] 5.07 3.16
MHHN [27] 4.95 1.78

LAB (w/B) [30] 3.92 0.39
HR-Net [25] 3.45 0.19

Ours 3.02 0.0
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