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In this document, we provide additional evaluations and ablations experiments in sup-
port of our work in Section A and expand on the network architectures and implementation
details in Section B.

A Additional Experiments
A.1 Depth
KITTI Improved Ground Truth. For Eigen split evaluation proposed by Eigen et al. [1]
on KITTI benchmark, the authors have made use of reprojected LIDAR points for depth
evaluation. However, such approach does not account for other important aspects like occlu-
sions, moving objects and ego-vehicle motion [2]. Hence, we make use of improved ground
truth from [11], in which occlusions are handled by considering stereo pairs and high quality
depth maps which are produced by accumulating five consecutive frames. This results in 652
images, which accounts to 93% of images of the Eigen split. Depth is capped to 80 meters
similar to Eigen split evaluation and the error metrics also remain the same. The evaluation
results using such improved ground truth data are reported in Table 1, where both variants
(V1 and V2) of our proposed method significantly outperform other benchmark methods in
all evaluation metrics. Interestingly, when compared in between, version V2, namely the
model with uncertainty estimation, exemplified better performance than model V1 without
uncertainty estimation, in all the evaluation metrics. This infers the effectiveness of the
uncertainty component on depth estimation.

Depth encoder variation. Using high-end architectures for the depth estimation is ad-
vantageous, nevertheless, would come at the cost of higher training and inference times.
Here, we report the impact of such architectures on depth performance by varying depth
encoders. Therefore, we compare depth performance of ResNet-18(B), Resnet-50(B) archi-
tectures from [2] and Packnet(B) architecture from, [5] with ResNet-18(P), ResNext-50 (P)
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Lower is better Higher is better

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

SFMlearner [15] 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Vid2Depth [7] 0.134 0.983 5.501 0.203 0.827 0.944 0.981
GeoNet [13] 0.132 0.994 5.240 0.193 0.833 0.953 0.985
DDVO [12] 0.126 0.866 4.932 0.185 0.851 0.958 0.986
Ranjan [8] 0.123 0.881 4.834 0.181 0.860 0.959 0.985
EPC++ [6] 0.120 0.789 4.755 0.177 0.856 0.961 0.987

MonoDepth2 [2] 0.090 0.545 3.942 0.137 0.914 0.983 0.995
Ours without uncert.(V1) 0.082 0.451 3.666 0.126 0.925 0.986 0.996

Ours with uncert.(V2) 0.081 0.427 3.532 0.124 0.928 0.986 0.996

Table 1: The evaluation of results on KITTI test data with improved ground truth. The
corresponding metrics are taken from their corresponding papers and [2], where the best
results along each metric are highlighted in bold.

Figure 1: Comparison of baseline (B) methods with proposed (P) methods, with absolute rel-
ative error against number of trainable parameters in millions(M). Here ResNet-18, ResNet-
50 versions of [2] and Packnet from [5] are compared with ResNet-18, ResNext-50 and
ResNext-101 depth encoders of our approach.

and ResNext-101(P) architectures of our proposed method, where (B) indicates baseline ap-
proaches and (P) stands for our proposed method. All the ResNet and ResNext architectures
(from both (B) and (P)) employ pretrained weights on ImageNet [9] while Packnet [5] is not
using any pretraining. From findings reported in Table 2, the proposed method involving
ResNet-18(P) depth encoder with just 11.69 million(M) trainable parameters, has achieved
comparable performance in regard to the high-end baseline (B) methods including Pack-
net with 128 M trainable parameters. Meanwhile, the proposed approach with ResNext-50
(P) depth encoder outperforms all the baseline (B) approaches significantly, while ResNext-
101(P) depth encoder improve results even further. Comparison of depth performance with
various architectures and their corresponding trainable parameters is depicted in Figure 1.

Comparison with MonoDepth2 [2]. In this experiment, we compare our model results
with our baseline, MonoDepth2 [2] to show the significance of our approach. Table 3 shows
the results of baseline and the proposed method at both, lower (640x192) and higher input
resolutions (1024x320) images. Here, the baseline [2] has not shown greater improvement
with change in input resolution, nevertheless, our approach manifested significant improve-
ment due to our use of sub-pixel convolutions for upsampling. We have also compared our

Citation
Citation
{Zhou, Brown, Snavely, and Lowe} 2017

Citation
Citation
{Mahjourian, Wicke, and Angelova} 2018

Citation
Citation
{Yin and Shi} 2018

Citation
Citation
{Wang, Miguelprotect unhbox voidb@x protect penalty @M  {}Buenaposada, Zhu, and Lucey} 2018

Citation
Citation
{Ranjan, Jampani, Balles, Kim, Sun, Wulff, and Black} 2019

Citation
Citation
{Luo, Yang, Wang, Wang, Xu, Nevatia, and Yuille} 2018

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Guizilini, Ambrus, Pillai, Raventos, and Gaidon} 2020

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x protect penalty @M  {}al.} 2015

Citation
Citation
{Guizilini, Ambrus, Pillai, Raventos, and Gaidon} 2020

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019



CHANDURI ET AL.: CAMLESSMONODEPTH 3

Lower is better Higher is better

Encoder param.(M) Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

ResNet-18(B) 11.69 0.115 0.903 4.863 0.193 0.877 0.959 0.981
ResNet-50(B) 25.56 0.110 0.831 4.642 0.187 0.883 0.962 0.982

Packnet(B) 128 0.111 0.785 4.601 0.189 0.878 0.960 0.982
ResNet-18(P) 11.69 0.111 0.832 4.709 0.188 0.881 0.961 0.982
ResNext-50(P) 25.03 0.106 0.750 4.482 0.182 0.891 0.964 0.983

ResNext-101(P) 88.79 0.103 0.774 4.514 0.180 0.897 0.965 0.983

Table 2: Table showing evaluation of results when the model is trained with different types
of encoders. (B) indicates baseline and (P) indicates proposed method. Evaluation of results
is done on KITTI test data. Except for the ResNet-18 approaches, for all other, ResNet-50
pose encoder is employed.

approach with baseline at edge cases involving thin objects, object boundaries and colour
saturated regions, and this qualitative analysis is demonstrated in Figure 2. Our model, espe-
cially for higher resolution input, exemplified better depth results at thin objects and the ob-
jects nearer to the camera. Also, sharper depth results can be observed at object boundaries,
credit to our efficient sub-pixel convolutions which enabled better super-resolution for up-
sampling in between decoder layers. In colour saturated regions (such as in Figure 2(d)), the
low resolution model of MonoDepth2 shows notable artifacts which are somewhat compen-
sated with the higher resolution model. Both our models, however, do not exhibit any such
artifacts and result in smoother and robust depth maps compared to the baseline approach.
To support the above listed statements, we additionally rendered 3D (X,Y,Z) perspectives for
the generated depth images (Figure 3), where Z coordinate stands for the normalized value
for each pixel of the generated depth image. As seen from Figure 3 our approach shows
less uncertainty (less dense points) in boundary regions of the objects. In other words, the
proposed approach predicts better the class assignment for each depth point, e.g. vehicle vs
background. Moreover, it demonstrates a better accuracy in terms of the reconstructed shape
of scene objects.

Figure 2: The qualitative comparison of our approach in contrary to MonoDepth2 [2] with
(a) near thin objects, (b) with close objects, (c) at object boundaries, (d) colour saturated
regions.

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019



4 CHANDURI ET AL.: CAMLESSMONODEPTH

Lower is better Higher is better

Method Resolution Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

MonoDepth2 [2] 640x192 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Ours (V2) 640x192 0.106 0.750 4.482 0.182 0.891 0.964 0.983

MonoDepth2 [2] 1024x320 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Ours (V2) 1024x320 0.102 0.723 4.374 0.178 0.898 0.966 0.983

Table 3: The evaluation results on KITTI benchmark with change in input resolution. For
1024x320 resolution, only ResNet-18 pose encoder is used due to computational limitations.
For 640x192 resolution, ResNext-50 pose encoder is used.

A.2 Odometry Evaluation

KITTI Odom Dataset. KITTI Odometry dataset [3] consists of 22 driving sequences, of
which only 11 sequences have ground truth trajectories and the remaining 11 sequences
are unlabelled. We make use of only labelled sequences for both, training and evaluation.
Similar to the prior approaches [2, 15], we first train our models on sequences - 00 to 08
using the KITTI Odometry split which has 36630 images and then evaluate separately on
sequence 09 (1591 images) and sequence 10 (1201 images) data.

Performance Metrics. For odometry evaluation, we use Absolute Trajectory Error
(ATE) as performance metric as proposed in [15]. This metric computes the Root Mean
Square Error (RMSE) between the ground truth and the estimated trajectory. ATE can be
computed with any of these: translation, rotation or velocity. All these parameters return the
same single error metric, making it easier to compare [14]. We opt translation to compute
ATE similar to previous approaches [2] for odometry evaluation.

Figure 3: The 3D qualitative comparison of our approach in contrary to MonoDepth2 [2] in
3D (X, Y, Z as in point cloud datasets) format, where the normalized color value for every
single pixel from the predicted images is used as depth (Z) value during 3D visualization.
In addition, the rotation of the point cloud data has been applied during renderings in order
to emphasize the improvements of the proposed approach over the baseline, namely less
uncertainty on neighbour object boundary regions as well as more accurate reconstruction of
shapes.

Evaluation. For odometry evaluation, we follow [2] and predict on five-frame test se-
quence, which is used in [15]. We calculate the ATE of our predictions for each of the four
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pairs in a five-frame test sequence, and then combine them to report the metric’s mean and
standard deviation. Results of odometry evaluation are reported in Table 4. For this exper-
iment, we have employed default settings of the proposed method. Our proposed approach
exemplifies similar performance with our baseline [2]. There is a significant improvement
in depth results when compared with our baseline, however, not in pose, which is predom-
inantly impacted by the use of common encoder for both camera pose and intrinsics esti-
mation. In addition, when compared with other approaches [7, 8, 13], similar to [2], the
improvement is not significant because of (i) not using custom architectures for odometry
evaluation as this particular pose network is designed particularly for better depth estimation
and (ii) using only two frames for pose estimation.

Method #frames Sequence 09 Sequence 10
DDVO [12] 3 0.045±0.108 0.033±0.074

SFMlearner [15] 5 0.021±0.017 0.020±0.015
Mahjourian [7] 3 0.013±0.010 0.012±0.011

GeoNet [13] 3 0.012±0.007 0.012±0.009
EPC++ [6] 3 0.013±0.007 0.012±0.008
Ranjan [8] 3 0.012±0.007 0.012±0.008

MonoDepth2 [2] 2 0.017±0.008 0.015±0.010
Ours 2 0.018±0.009 0.015±0.009

Table 4: Pose evaluation performed with KITTI Odom data. Sequences 09 and 10 of this
dataset are used for evaluation purposes, where #frames indicate the number of input frames
for pose network. The mean ATE along with its standard deviation is reported for each
approach.

A.3 Camera Intrinsics Evaluation
We opt for KITTI odometry dataset [3] for camera intrinsics evaluation similar to our odom-
etry evaluation (refer subsection A.2). Here, the model is trained with sequences - 00 to 08,
and we use sequences 09 and 10 for evaluation. The mean and standard deviation of focal
length parameters ( fx and fy) and principal offsets (x0 and y0) are reported with each of the
evaluation sequences, and these parameters are compared with the ground truth data. Dis-
tortion parameters are not modelled, hence are not reported. For this setup, we use ResNext-
50 depth encoder and ResNet-18 pose encoder, with input resolution to the framework as
1024x320. The quantitative evaluation findings for this experiment are shown in Table 5.
It can be observed that the results are impacted significantly by using a light-weight camera
network and also due to the usage of a common encoder for camera pose and intrinsics. Nev-
ertheless, the depth estimation results were improved, with this intrinsics estimations, when
compared to given camera intrinsics as input (shown in KITTI ablation experiments as part
of the main paper).

B Additional Implementation Details
Depth Network. We embed efficient sub-pixel convolutions into the depth decoder for bet-
ter upsampling in contrary to the nearest-neighbour interpolation followed in previous ap-
proaches [2, 12, 13, 15]. These efficient sub-pixel convolutions involve three convolution
operations followed by a final pixel shuffling operation, which operates at lower resolution
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Method Sequence 09 Sequence 10 Ground Truth
Horizontal focal length ( fx) 0.6902 ± 0.0138 0.6868 ± 0.0208 0.5767

Vertical focal length ( fy) 1.9208 ± 0.0805 1.8947 ± 0.0807 1.9111
Horizontal centre (x0) 0.5032 ± 0.0031 0.5017 ± 0.0029 0.4909

Vertical centre (y0) 0.4681 ± 0.0025 0.4678 ± 0.0030 0.4949

Table 5: Our camera network estimates of the intrinsics parameters, normalized by the input
image resolution, are compared against the ground truth data. The mean of these normalized
intrinsics estimates with standard deviations are reported for each parameter computed on
all the images from KITTI Odom 09 and 10 sequences.

Figure 4: (a) shows the sub-pixel convolution operation adapted from [10] depicting three
3x3 2D convolutions followed by a pixel-shuffling operation which rearranges pixels from
higher number of channels into higher resolution of width and height. (b) shows the multi-
scale decoder architecture with 3x3 convolutions (blue) and sub-pixel convolutions (green)
predicting outputs at four scales.

in extracting feature information necessary to perform super-resolution. Just before the final
pixel shuffle operation, the output is arranged to have the channels multiplied by a factor
of, r2 where r is the upsample factor. This output is finally shuffled across the pixels along
channels to obtain image super-resolution.This operation is shown in Figure 4(a).

The depth network, in overall, takes in a single image as input and outputs disparity or
inverse-depth along with a pixel-wise uncertainty map. These outputs are obtained at four
scales, i.e. at 1/8, 1/4, 1/2 and 1, scaling with input image resolution as shown in Figure 4(b).
Such multi-scale decoder is employed to prevent the gradient locality of the bilinear sampler
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layer k s p chns res input activation
dconv5 3 1 1 256 32 econv5 ELU
s1conv5 5 1 2 64 32 dconv5 ReLU
s2conv5 3 1 1 32 32 s1conv5 ReLU
upconv5 3 1 1 256*4 32 s2conv5 ReLU
iconv5 3 1 1 256 16 [ps]upconv5, econv4 ELU

dconv4 3 1 1 128 16 iconv5 ELU
s1conv4 5 1 2 64 16 dconv4 ReLU
s2conv4 3 1 1 32 16 s1conv4 ReLU
upconv4 3 1 1 128*4 16 s2conv4 ReLU
iconv4 3 1 1 128 8 [ps]upconv4, econv3 ELU

disp_uncert4 3 1 1 2 1 iconv4 Sigmoid

dconv3 3 1 1 64 8 iconv4 ELU
s1conv3 5 1 2 64 8 dconv3 ReLU
s2conv3 3 1 1 32 8 s1conv5 ReLU
upconv3 3 1 1 64*4 8 s2conv5 ReLU
iconv3 3 1 1 64 4 [ps]upconv3, econv2 ELU

disp_uncert3 3 1 1 2 1 iconv3 Sigmoid

dconv2 3 1 1 32 4 iconv3 ELU
s1conv2 5 1 2 64 4 dconv2 ReLU
s2conv2 3 1 1 32 4 s1conv5 ReLU
upconv2 3 1 1 32*4 4 s2conv5 ReLU
iconv2 3 1 1 32 2 [ps]upconv2, econv1 ELU

disp_uncert2 3 1 1 2 1 iconv2 Sigmoid

dconv1 3 1 1 16 2 iconv2 ELU
s1conv1 5 1 2 64 2 dconv1 ReLU
s2conv1 3 1 1 32 2 s1conv1 ReLU
upconv1 3 1 1 16*4 2 s2conv1 ReLU
iconv1 3 1 1 16 1 [ps]upconv1 ELU

disp_uncert1 3 1 1 2 1 iconv1 Sigmoid

Table 6: The network details of depth decoder used in our approach. Here, k indicates ker-
nel size, p indicates padding, chns indicate number of channels for that layer, res stands for
the downsampling factor, where 1 indicates full resolution, input stands for the input to that
layer, [ps] indicates pixel shuffle operation with an upsample factor of 2, econv represents in-
puts from various levels of the encoder, and lastly activation indicates the activation function
used for that corresponding layer.
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and to prevent the loss objective getting stuck at local minimum [2]. The disparity map
obtained is later converted to depth using D = 1/(a ∗σ + b) where D represents depth and
σ represents the disparity map. Here, a and b are constants which are chosen such as to
constrain the depth values between 0.1 and 100. The detailed network architecture is shown
in Table 6.

Pose Decoder
layer k s p chns res input activation

pconv0 1 1 1 256 32 econv5 ReLU
pconv1 3 1 1 256 32 pconv0 ReLU
pconv2 3 1 1 256 32 pconv1 ReLU
pconv3 1 1 1 6 32 pconv2 -

Camera Network
inconv0 1 1 1 256 32 econv5 ReLU
inconv1 3 1 1 2 32 inconv0 Softplus
inconv2 3 1 1 2 32 inconv0 -
inconcat - - - - - inconv1, inconv2 -

Table 7: The network details of the pose decoder and the camera network are shown. Here,
k indicates the kernel size, p indicates the padding parameter, chns stands for the number of
channels for that particular convolutional layer, res corresponds to the downsampling factor,
where 1 indicates full resolution, input stands for the input to that layer, econv5 is the output
from pose encoder, and lastly activation shows the used activation function

Pose and Camera Networks. The pose encoder is modified to take in a pair of images
as input, which are concatenated channel-wise. Also, the weights in the expanded filter are
divided by 2, which makes the output of the convolution similar to ResNet default output
with a single image input [2]. The camera network follows a light-weight architecture to
estimate camera intrinsic parameters. Horizontal focal length ( fx) and Horizontal centre
(x0) parameters are initialized to W/2, and Vertical focal length ( fy) and Vertical centre
(y0) parameters are initialized to H/2 for better convergence following [4], where W and H
represents width and height of the input image respectively. Network details of both pose
and camera networks are shown in Table 7.
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