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1 Further Implementation Details

We implemented our model in PyTorch, as stated in the main paper. We based our imple-
mentation of the StyleGAN 1 and StyleGAN 2 models on freely on Github available re-
implementations of StyleGAN 11 and StyleGAN 22. Our code is also available on Github3

and our training logs can be viewed online4.
We perform our experiments on a range of different GPUs with at least 11 GB of GPU

memory. For all of our experiments, we train a model for 100000 iterations, using two GPUs
with a batch size of 4 per GPU. We use the Adam [2] optimizer with a cosine annealing
learning rate schedule [3] and an initial learning rate of 0.0001. During the preprocessing,
all input images are resized to 256×256 pixels, disregarding aspect ratios.

Network Details Our encoder is based on the ResNet architecture, but does not follow the
layout of other well-known ResNet feature extractors, e.g. ResNet-18, or ResNet-152. In-
stead, the number of convolutional layers in our feature extractors depends on the resolution
of the input image. The number of necessary ResNet blocks can be calculated using the
following formula:

number of blocks = 2+2 · (log2(insize)− log2(outsize)). (1)
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We first start with two "start blocks", then we use two ResNet blocks for each resolution
from input size to output size of the encoder. The output size of the encoder is typically set
to 4, wheras we use 256 as our input size. When using 256 and 4 as an input and output size,
respectively, we get the following number of ResNet blocks:

number of blocks = 2+2 · (log2(256)− log2(4)) (2)
= 2+2 · (8−2) (3)
= 2+2 ·6 (4)
= 14. (5)

Following each ResNet block, the network splits into three branches. If we use Style-
GAN 1 as decoder, we only split after the first ResNet block of each resolution. The first
split is followed by a global average pooling and a 1× 1 convolution that predicts parts of
the latent code. The second split is followed by a 1×1 convolution that is used to predict the
noise inputs for the current feature map resolution. The third branch goes to the next ResNet
block. Please see Figure 2 of the main paper for a structural overview.

2 Reconstruction Results on Pre-Trained StyleGAN
Models

Besides a reconstruction performance comparison to other state-of-the-art models, we pro-
vide reconstruction results on a range of pre-trained generator models. First, we provide
reconstruction results when using a StyleGAN model pre-trained on the FFHQ [1] dataset.
In this line of experiments, we trained our encoder on several different datasets and apply en-
coder and decoder on a range of datasets reporting the reconstruction results in Table 1. Fur-
thermore, we trained StyleGAN generators on the LSUN Church and LSUN Cat datasets [4]
and provide the same range of experiments in Table 2 and Table 3. The results of these ex-
periments show that reconstruction with our proposed encoder works using a diverse range
of models, thus confirming our hypothesis that our encoder model generalizes very well to
various image domains.

Further Visualizations Explaining the Role of Noise
In Figures 2, 3, 4, and 5 we show more detailed results of our noise shifting experiments.
These experiments show that noise is used in several ways: (1) Noise can be used to control
the content of the generated image. (2) Noise can be used to control the colors of individual
pixels of the generated image. (3) A StyleGAN model trained on one dataset can make use
of noise in a different way than a StyleGAN model trained on a different dataset, i.e. the
color coding depends on the StyleGAN model and used dataset for training the StyleGAN
model. (4) When only using stochastic noise as input, noise does not have as much influence
as when using controlled noise as input.

Further Visualizations Showing Interpolation Results
In Figure 6 we show further interpolation results. Again, we can observe that models trained
with the two network approach provide more meaningful interpolations. We can also make
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the following observations: (1) If using a model trained on another domain than the input
image, e.g. a model trained to reconstruct FFHQ using the two network strategy and using
images from the LSUN church dataset (see Figure 6(b)), we can see that the encoder explic-
itly learns to embed the latent code into the regions where faces can be generated, regardless
of the input image. We can hence conclude that the encoder does not learn anything about
the content of the image when embedding into the latent code. (2) in Figure 6(b) and Fig-
ure 6(d), we can observe that the predicted noise maps are “rendered” on top of the results
of the latent code. This might be because the two networks in our two network architecture
are independent of each other. In the future it might be worthwile to achieve a closer cou-
pling of noise and latent code in the two network approach. (3) Overall, we can observe that,
when not training with the two network strategy, the latent code is only used to add color
variations into the resulting images. This can, for instance, be observed in Figure 6(a) in the
second-to-right image in the bottom-most row. Here, we can see that the latent code also
influences the colors of the resulting image, since the image on the right is the reconstruction
of the second image without any interpolation between the two input images.

Besides training two independent networks to retain more semantic information in the
latent code, we found that such results are also possible with careful tuning of the learning
rate and a two-step training strategy. We denote this approach as the learning rate strategy.
Here, we first train the model without learning the layers that project into the noise inputs.
Later, we fine-tune the model including the noise layers but we reduce the learning rate of
the layers responsible for predicting the latent code to avoid them to forget everything they
learned because the noise inputs are simpler to optimize. We compare the two approaches
for maximising the semantic meaning of the latent code, by providing a comparison of in-
terpolations for the approaches based on the two network and the learning rate strategy in
Figure 7. We can observe that the learning rate split strategy produces better qualitative re-
sults. However, it is very difficult to achieve these results for each StyleGAN version, since
the learning rate has to be tuned for each model individually.

3 Quantitative Reconstruction Results with Two Stage
Training and Two Networks

In Table 4 we show quantitative results for reconstruction on multiple datasets when using a
model trained with the two network strategy. The results show that a model trained with the
two network strategy is still able to provide meaningful reconstructions. However, the results
also show that the resulting reconstructions are of worse quality than the reconstructions that
nearly completely rely on the noise input. Furthermore, we can see that the resulting models
are not well suited for cross domain reconstruction. We argue that this is because the latent
code is specialized to a specific dataset/data distribution and is not able to handle inputs that
are different, since the encoder has learned to project the input image into the regions of the
latent space for the specific type of data it has been trained for. From these observations
we conclude that our models, which are not trained to maximise the semantic meaning of
the latent code, are so versatile, because they learn to encode the content of the image in the
noise maps and to use the values of each pixel to further encode the color of the pixel, making
them independent of the latent code in StyleGAN, which is adjusted for one distribution only.
However, it would be interesting to investigate the latent projections of different encoders to
learn more about the structure of the latent code in StyleGAN. We leave these experiments
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Training Dataset,

StyleGAN Version,

Projection Target

Dataset and Metric for Evaluation
FFHQ Church Bedroom Cat

FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑

FFHQ, 1, Z 9.85 25.03 0.91 7.17 20.37 0.88 3.74 23.32 0.91 4.17 22.14 0.88
FFHQ, 1, W 0.64 25.54 0.94 1.37 22.26 0.93 0.55 24.21 0.94 0.90 23.02 0.91
FFHQ, 2, Z 3.92 24.39 0.88 4.66 19.87 0.82 3.24 22.71 0.86 4.47 21.50 0.84
FFHQ, 2, W 0.75 29.11 0.95 1.23 24.48 0.94 0.57 28.13 0.96 0.96 26.01 0.93
Church, 1, Z 17.28 19.83 0.86 3.17 23.32 0.91 4.22 21.90 0.90 4.98 20.50 0.86
Church, 1, W 3.30 20.99 0.90 0.26 26.18 0.95 1.25 23.65 0.94 1.37 22.15 0.90
Church, 2, Z 12.24 20.92 0.83 3.17 23.08 0.86 9.76 22.04 0.85 7.33 20.76 0.82
Church, 2, W 2.33 23.10 0.91 0.21 28.99 0.95 0.60 26.43 0.96 1.06 24.35 0.91
Bedroom, 1, Z 5.82 23.14 0.91 2.23 23.41 0.92 1.13 26.94 0.95 2.11 23.71 0.90
Bedroom, 1, W 1.60 24.10 0.91 1.16 23.00 0.93 0.30 26.22 0.95 0.79 23.86 0.91
Bedroom, 2, Z 7.17 22.70 0.87 6.48 20.49 0.84 2.96 24.29 0.88 5.10 21.97 0.85
Bedroom, 2, W 1.59 26.44 0.93 1.06 26.97 0.94 0.36 31.01 0.97 0.84 26.78 0.93
Cat, 1, Z 39.65 24.60 0.92 6.68 24.25 0.93 4.01 26.71 0.94 2.96 25.03 0.92
Cat, 1, W 1.12 24.94 0.93 0.88 24.29 0.94 0.28 26.40 0.96 0.57 24.86 0.93
Cat, 2, Z 5.31 23.61 0.90 2.83 22.73 0.90 2.18 24.49 0.92 2.71 23.31 0.89
Cat, 2, W 1.34 28.38 0.95 0.55 27.99 0.95 0.33 30.35 0.97 0.68 28.41 0.94

Table 1: The results of our reconstruction experiments. We use a StyleGAN model for
decoding, which was pre-trained on the FFHQ dataset [1] and is not updated during the
training of the encoder. Only the first highlighted row uses an encoder which is also trained
on FFHQ, the other encoders are trained on different LSUN datasets [4]. The first column
shows the dataset, the version of StyleGAN (1, 2), and the projection target (Z,W). Each
model is evaluated on different datasets and we report FID, PSNR, and SSIM.

open for future work.
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Training Dataset,

StyleGAN Version,

Projection Target

Dataset and Metric for Evaluation
FFHQ Church Bedroom Cat

FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑

FFHQ, 2, Z 5.87 25.19 0.91 8.28 19.95 0.84 4.96 23.45 0.89 3.90 22.65 0.87
FFHQ, 2, W 0.37 29.48 0.96 1.21 23.99 0.93 0.48 27.96 0.96 0.83 25.95 0.93
Church, 2, Z 13.31 21.04 0.86 2.58 22.92 0.89 4.04 22.85 0.89 5.95 21.56 0.86
Church, 2, W 2.06 24.18 0.92 0.19 30.12 0.96 0.40 27.73 0.96 0.96 25.40 0.92
Bedroom, 2, Z 8.05 24.07 0.90 3.05 22.45 0.88 2.28 26.17 0.92 2.85 23.70 0.89
Bedroom, 2, W 0.75 26.75 0.94 0.62 26.69 0.95 0.17 31.64 0.97 0.53 27.28 0.93
Cat, 2, Z 10.72 24.31 0.91 4.12 22.23 0.87 4.62 24.87 0.90 3.62 24.42 0.90
Cat, 2, W 0.92 28.06 0.95 0.48 28.15 0.96 0.25 30.55 0.97 0.48 28.60 0.94

Table 2: The results of further reconstruction experiments. We use a StyleGAN model for
decoding, which was pre-trained on the LSUN cat dataset and not updated during the training
of the encoder. We train the decoder of our models on different datasets (FFHQ and LSUN
datasets), StyleGAN 2, and different projection targets (Z,W) as shown in the first column.
We evaluate each model on different datasets and report FID, PSNR, and SSIM.

Training Dataset,

StyleGAN Version,

Projection Target

Dataset and Metric for Evaluation
FFHQ Church Bedroom Cat

FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑

FFHQ, 2, Z 2.89 26.52 0.93 2.59 21.75 0.91 1.33 25.41 0.94 1.66 23.77 0.91
FFHQ, 2, W 0.33 29.32 0.96 0.87 24.29 0.94 0.41 27.77 0.96 0.67 25.88 0.93
Church, 2, Z 6.75 21.82 0.89 0.85 25.69 0.92 1.92 23.77 0.92 2.52 22.49 0.89
Church, 2, W 2.05 24.34 0.92 0.18 29.62 0.95 0.44 27.74 0.96 0.88 25.36 0.92
Bedroom, 2, Z 5.19 24.55 0.91 1.72 23.86 0.92 0.87 27.63 0.94 1.50 24.22 0.90
Bedroom, 2, W 0.83 26.84 0.94 0.72 26.59 0.95 0.16 31.58 0.97 0.53 27.25 0.93
Cat, 2, Z 6.33 25.36 0.92 1.58 24.72 0.92 1.16 26.77 0.94 1.58 25.22 0.91
Cat, 2, W 0.56 28.25 0.95 0.36 28.28 0.96 0.17 30.72 0.97 0.38 28.63 0.94

Table 3: The results of further reconstruction experiments. Here, we use a StyleGAN model
for decoding, which was pre-trained on the LSUN church dataset and not updated during the
training of the encoder. We train the decoder of our models on different datasets (FFHQ and
LSUN datasets), StyleGAN 2, and different projection targets (Z,W) as shown in the first
column. We evaluate each model on different datasets and report FID, PSNR, and SSIM.
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Cat Base

(a) Results for models based on StyleGAN models pre-trained on the LSUN Cat dataset.

Church Base

(b) Results for models based on StyleGAN models pre-trained on the LSUN Church dataset.

Figure 1: Results of further Reconstruction experiments with StyleGAN models pre-trained
on other datasets than FFHQ. Images in the first row are real images, images in the following
rows are reconstructions where the naming is as follows: StyleGAN variant, latent projecting
strategy. Best viewed in color.
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Figure 2: Longer version of noise shifting experiments with a StyleGAN 2 generator pre-
trained on the FFHQ dataset. Each column shows the results when “shifting” each pixel of
the corresponding noise map shown in the first row of the column by multiplying the noise
map with the factors indicated at the left side. It is clearly visible that the noise maps are not
only used to encode the content of an image, but that noise can also be used to encode color
and contrast of images. However, not all noise maps are necessary for this color coding, as
the result does not change for some noise maps, regardless of the factor used.
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Figure 3: Further results of noise shifting experiments. Here we show the results with a
StyleGAN 2 generator pre-trained on the LSUN church dataset. The semantics are the same
as in Figure 2. Here it is also clearly visible that the noise maps are not only used to encode
the content of an image, but that noise is also used to encode color and contrast of images, but
for this model different noise maps are used and the color model encoded is also different.
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Figure 4: Further results of noise shifting experiments. Here we show the results with a
StyleGAN 2 generator pre-trained on the LSUN cat dataset. The semantics are the same as
in Figure 2 and Figure 3. Here it is also clearly visible that the noise maps are not only used
to encode the content of an image, but that noise is also used to encode color and contrast
of images, but for this model different noise maps are used and the color model encoded is
again different.
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Figure 5: Noise shift experiments when using unconditional image generation with a Style-
GAN model trained on the FFHQ dataset. Similar to our other noise shifting experiments,
we can see that the shifted noise has influence on the resulting image. However, the influence
of the noise highly depends on the layer the noise is applied to. We can see that at some parts
the color of image parts change based on the noise. This is in line with our other experi-
ments but since the noise inputs do not encode the content of the image noise is added to the
generated image. Here, we did not multiply the noise inputs, we added a constant amount to
each pixel.
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ffhq stylegan 2 wplus

(a) Encoder trained on FFHQ, decoder pre-trained on FFHQ, with StyleGAN 2, and projecting into W .ffhq stylegan 2 wplus noise after latent

(b) Encoder trained on FFHQ, decoder pre-trained on FFHQ, with StyleGAN 2, projecting into W , and our two
network strategy.lsun cat stylegan 2 wplus

(c) Encoder trained on LSUN cat, decoder pre-trained on FFHQ, with StyleGAN 2, and projecting into W .lsun cat stylegan 2 wplus noise after latent

(d) Encoder trained on LSUN cat, decoder pre-trained on FFHQ, with StyleGAN 2, projecting into W , and our
two network strategy.

Figure 6: Several images showcasing the behaviour of our models when interpolating latent
code and noise maps between two input images. We can observe that models trained without
the two network strategy do not make any "intelligent" use of the latent code. The latent
code is only used to encode some colors, as can be seen in the second-to-right image in the
bottom-most row in (a) and (c). For the other models, we can observe that our two network
strategy can only be used to faithfully reconstruct images of the same data distribution. A
semantically meaningful interpolation can be observed in (b), but since the base model was
trained on the FFHQ dataset, the latent code can only directly be used to generate faces. The
results in (d) are similar to the results in the main paper, but here we can also see that noise
is only rendered on top of the image generated by the latent code.
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lsun church stylegan 1 wplus

(a) Encoder trained on LSUN church, decoder pre-trained on FFHQ, with StyleGAN 1, and projecting into W .
lsun church stylegan 1 wplus two stem

(b) Encoder trained on LSUN church, decoder pre-trained on FFHQ, with StyleGAN 1, projecting into W , and
our two network strategy.

lsun church stylegan 1 wplus lr split

(c) Encoder trained on LSUN church, decoder pre-trained on FFHQ, with StyleGAN 1, projecting into W , and
using the learning rate strategy.

Figure 7: Further images showcasing the behavior of our models when interpolating latent
code and noise maps between two input images. Here, we used models trained on StyleGAN
1 that project into W . We compare plain projection into W , our two network strategy and
our learning rate strategy to maximise the semantic meaning of the predicted latent code.
We can observe that the results of the two network and the learning rate strategy (see (b) and
(c)) are of similar visual quality. However, the reconstructions in (c) have a slightly better
visual quality and also the interpolations seem to be more reasonable. We conclude that the
learning rate strategy is superior to the two network strategy, but it is more difficult to find
the correct learning rate ratio, as already discussed in the main paper.
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Training Dataset,

StyleGAN Version,

Projection Target

Dataset and Metric for Evaluation
FFHQ Church Bedroom Cat

FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑

FFHQ, 2, Z 24.27 15.35 0.69 38.62 12.76 0.60 41.53 14.15 0.66 29.47 13.77 0.63
FFHQ, 2, W 9.73 22.16 0.85 22.53 17.33 0.74 20.35 19.09 0.80 15.20 18.92 0.79
Church, 2, Z 31.02 16.32 0.72 18.50 17.78 0.74 27.47 17.48 0.75 23.33 16.35 0.71
Church, 2, W 36.19 18.81 0.79 5.46 21.03 0.84 13.94 19.21 0.81 15.77 18.50 0.78
Bedroom, 2, Z 29.12 15.94 0.68 23.61 15.14 0.66 15.72 17.00 0.70 24.38 15.53 0.66
Bedroom, 2, W 16.12 21.23 0.83 15.23 19.46 0.80 6.67 22.17 0.84 10.34 20.76 0.82
Cat, 2, Z 23.55 19.03 0.78 22.14 17.25 0.74 20.52 19.11 0.78 18.81 18.24 0.76
Cat, 2, W 20.22 21.75 0.86 15.73 19.64 0.83 10.09 21.30 0.85 9.00 21.19 0.85

Table 4: Image reconstruction results for models trained with our two network strategy. We
can observe that these models are not as versatile as our other image reconstruction models
that are not trained to maximise the semantic meaning of the latent code. However, the
reconstruction quality is still high on the datasets they have been trained on.
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