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This document provides additional material supplementing the main manuscript. Sec-
tion | gives definitions of width, depth, circumference and length measurements over the
SMPL [11] body surface. Section 2 qualitatively corroborates the local controllability exper-
iments presented in the main manuscript. Section 3 provides qualitative results comparing
our measurement distribution prediction network against previously-proposed [16] SMPL
shape coefficient () distribution predictors, using input images from our (i) synthetic evalu-
ation dataset, (ii) SSP-3D [14], and (iii) two private datasets of tape-measured humans, which
were named “A-Pose Subjects” and “Varying-Pose Subjects” in the main manuscript. Sec-
tion 4 contains details regarding synthetic data generation and examples of synthetic training
images and synthetic evaluation images used in the ablation studies presented in the main
manuscript.

Finally, the attached video file 1340_varying_local_measurements.mp4 Vi-
sualises the effect of smoothly increasing specific input measurement offsets from -5cm to
5cm, thereby demonstrating the semantic local controllability of our measurements-to-f3s
regressor.

1 Body Measurement Definitions

In the main manuscript, obtaining measurements from an SMPL T-pose body was abstracted
away as an operation m = measure(f). In this section, Figures 1 and 2 give definitions of
each of the 23 body measurements, in terms of the SMPL T-pose joint/vertex IDs used as
endpoints (for widths, depths and lengths) or waypoints (for circumferences). Given the
joint/vertex IDs, measurement values are obtained by simply computing the 3D Euclidean
distance between the corresponding endpoints/waypoints for a T-pose body. For circum-
ferences, the Euclidean distance between waypoints are summed along the circumference.
Note that a T-pose SMPL body only depends on given shape coefficients B (see Equation 1
in the main manuscript). Thus, the operation m = measure(f8) involves (i) generating T-pose
joints and vertices from the input 8, (ii) gathering measurement endpoints/waypoints using
the joint and vertex IDs given in Figure 2 and (iii) computing Euclidean distances between
endpoints/waypoints and summing if needed.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Loper, Mahmood, Romero, Pons-Moll, and Black} 2015

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2021{}

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2020
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Figure 1: Front- and side-view visualisation of 23 measurement definitions over the SMPL
[11] body surface. Please refer to Figure 2 for the semantic meaning of each measurement
and the specific SMPL vertex/joint IDs used to define them. Colour key: Yellow = “Length”
measurements defined using SMPL T-pose joints, Pink = “Width” / “Depth” measurements
defined using SMPL T-pose vertices, Green = “Circumference” measurements defined using
SMPL T-pose vertices.

Figures 1 and 2 visualise and define separate left/right limb measurements. However, lo-
cally controlling left/right measurements independently is challenging with the SMPL body
model. The SMPL shape space is learnt using PCA applied to human body scans from
CAESAR [13] and the majority of human bodies exhibit strong left/right symmetry, both in
CAESAR and in the general population. Thus, we convert the separate left/right limb mea-
surements defined in Figures | and 2 into single limb measurements by taking the mean of
the left and right sides.

2 Local Controllability

The main manuscript analyses the local controllability of the proposed measurements-to-f3s
regressor. In particular, we quantitatively show that regressing from body measurements to
10 SMPL shape coefficients (8s) results in poor controllability, wherein an input offset of
+5cm applied to a specific measurement results in large undesired output offsets to several
other measurements. This is because the 10-dimensional SMPL shape space is not expres-
sive enough to allow for fine-grained local control of body shape. A significant quantitative
improvement in local controllability is observed when the number of SMPL fs is increased
from 10 to 70. Figure 3 demonstrates this qualitatively, by visualising the effect of input
measurement offsets on SMPL bodies when regressing 10 s and 70 Bs. Using only 10
B's may result in either (i) non-local output offsets and unrealistic output body shapes (Fig-
ure 3, top row, highlighted by red arrows) or (ii) zero output offsets and unchanged output
body shapes (Figure 3, top row, column 5). On the other hand, the measurement-to-70-fs
regressor yields realistic and local body shapes offsets, which match the desired inputs.
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Figure 2: Semantic meaning of each measurement visualised in Figure 1, along with SMPL
joint/vertex IDs used to define them. Joint/vertex IDs correspond to endpoints for “Width”,
“Depth” and “Length” measurements, and waypoints for “Circum.” measurements. These
specific 23 measurements were chosen to sufficiently constrain the body surface, such that a
full T-pose body mesh can be recovered from just 23 measurements.

] " d 8 % 9 Y )
e g B - iy P e —— —————
Measurements \’ % ) 9_ : 'Y
i . ’
to .
Base Abdomen Thigh Hip
10 BS Shape Width Length Depth
+4cm ] 1 +dem (]
] » ) s ] ]
i B - - ————— o o
Measurements .
.
to Chest v e Thigh Hip

70 Bs Width Wi Length Depth
+4cm +4cm +4cm
1 |

i i

Figure 3: Visualisation of the effect of +4cm input measurement offsets applied to a base
body shape. Measurement offsets are mapped to SMPL f offsets using the proposed
measurements-to-fs linear regressor, using 10 SMPL s (top) and 70 SMPL Ss (bottom).
Regressing only 10 s may result in (i) non-local output offsets and unrealistic output body
shapes (top row, highlighted by red arrows) or (ii) zero output offsets and unchanged output
body shapes (top row, hip depth in column 5 ). Regressing 70 Bs yields realistic and local
body shape offsets, which match the desired inputs.

3 Qualitative Results

Figures 4, 5 and 6 compare results from our proposed measurement distribution predictor
and SMPL B distribution predictors, both using 70 s (i.e. the number of shape coefficients
output by our measurements-to-fs regressor), as well as 10 Bs as proposed by Sengupta
et al. [16]. We conclude that predicting Gaussian distributions over semantic body mea-
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surements allows for meaningful predictions of local aleatoric [3, 7] shape uncertainty that
models ambiguities in the input images related to the subject’s pose, camera viewpoint and
occlusion, which is not possible with independent Gaussian distributions over global SMPL
Bs. Improved local shape uncertainty quantification yields better body shape estimates after
probabilistic combination, as demonstrated in the main manuscript.

4 Synthetic Data Generation

Following [14, 15, 16, 17], we adopt a synthetic training framework as a means of overcom-
ing the lack of body shape diversity in common datasets for 3D pose and shape estimation
from images [5, 10, 19]. In particular, we use a edge-and-joint-heatmap proxy representa-
tion [15], to bridge the domain gap between low-fidelity synthetic training inputs and real
test inputs.

Examples of synthetic RGB images, and corresponding edge-image + 2D joint heatmap
proxy representations, are given in Figure 7. They are generated on-the-fly during training
by sampling a random SMPL shape, SMPL pose, clothing texture and background image for
each training iteration, and rendering using a light-weight renderer [12].

SMPL poses (i.e. 3D joint rotations) and global body rotations are randomly selected
from the training splits of UP-3D [10], 3DPW [19] and Human3.6M [5]. SMPL shapes
are obtained in two stages: (i) base body shape coefficients are randomly sampled from
N(B:;0,1.252) for i € {1,2,...,|B|}, and (ii) measurement offsets from the base body (for
each of the 23 measurements listed in Figure 2) are randomly sampled from N (m;0, 0.022)
(units of metres), converted into shape coefficient offsets using the measurements-to-fs re-
gressor and added to the random base body shape. Step (ii) acts as random body measure-
ment augmentation, and is crucial when learning to estimate measurement uncertainties.

Clothing textures for the SMPL body are randomly selected from SURREAL [18] and
MultiGarmentNet [1]. Background images are obtained from LSUN [21], which contains
both indoor and outdoor scenes. Note that background images, intentionally, may contain
other humans - this is important for the network to be robust against background humans in
real in-the-wild test images.

The sampled SMPL shape, SMPL pose, clothing texture and background image are ren-
dered into a synthetic RGB image using Pytorch3D [12]. Perspective camera translation is
randomly sampled, along with Phong lighting parameters. 2D joint locations (and Gaussian
heatmaps) are generated by projecting 3D SMPL joint locations onto the 2D image plane.
Synthetic RGB images are converted to edge-images using Canny edge detection [2].

Finally, following [14, 16, 17], several data augmentation and corruption methods are
applied to the synthetic edge-images and joint heatmaps, to further close the domain gap
between training data and noisy test data. Hyperparameters associated with random data
generation and augmentation are listed in Table 1.

The synthetic training inputs are paired with ground-truth SMPL pose parameters, body
measurements, global body rotations and 2D joint locations, which are each obtained at some
point in the synthetic input generation process, as detailed above. Body measurements are
computed from sampled SMPL shape coefficients using the measure(.) operation defined in
Section 1.

The ablation studies presented in the main manuscript use a synthetic evaluation dataset,
which is rendered very similarly to synthetic training data. Examples are given in Figure 8.
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Our Measurements Distribution Prediction Network Sengupta et al. Distribution Predictions

Input Mean Ocm | B>3cm Width Axis Depth Axis Mean Width Axis
Image Body Measurement and Body Shape Distribution Prediction Body Body Shape Distribution Prediction

Depth Axis

Figure 4: Comparison between our predicted measurement distributions and SMPL f distri-
butions from Sengupta et al. [16] on images from SSP-3D [14]. Note that [16] is the previous
state-of-the-art approach in terms of body shape metrics on SSP-3D. Similar to Figure 3 in
the main manuscript, this figure demonstrates that Gaussian measurement distributions ex-
hibit meaningful /local shape uncertainty arising from varying camera angles, challenging
poses and self-occlusions. In contrast, independent Gaussian SMPL f distributions from
[16] cannot model such local shape uncertainty, since s control global deformations over
the whole body surface. Instead, predicted shape uncertainty increases globally over the
whole body when the input contains a challenging pose or self-occlusion (compare the bot-
tom 2 rows, columns 10-13). Such global uncertainty is less useful for downstream tasks as
it does not specify which body-parts have high prediction uncertainty, only that the network
is uncertain as a whole. Thus, probabilistically combining measurement distributions yields
better shape metrics than [16], as shown in Tables 2 and 3 in the main manuscript.


Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2021{}

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2020

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2021{}

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2021{}

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2021{}


6  SUPPLEMENTARY: PROBABILISTIC HUMAN SHAPE & POSE WITH A LOCAL MODEL

Measurements Distribution Prediction Network 70 SMPL ps Distribution Prediction Network

Input Mean Ocm i #>3cm Width Axis Depth Axis Mean Width Axis Depth Axis

Image Body Measurement and Body Shape Distribution Prediction Body Body Shape Distribution Prediction

Figure 5: Comparison between measurement distribution predictions and SMPL 70 B dis-
tribution predictions on images from our two private datasets of tape-measured humans,
“A-Pose Subjects” (rows 1-4) and “Varying-Pose Subjects” (rows 5-7). This figure further
corroborates that predicting measurement distributions leads to meaningful local shape un-
certainty when given images with different global body orientations, i.e. front-facing images
result in lower predicted uncertainties for width measurements (columns 3, 5, 6), while side-
facing images result in lower uncertainties for depth measurements (columns 4, 7, 8). On the
other hand, uncertainty predictions from the SMPL 70 3 distribution network cannot model
such local ambiguities in the input image due to variations in camera viewpoint.
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Our Measurements Distribution Prediction Network Sengupta et al. Distribution Predictions

,

Ocmfl I Width Axis Depth Axis Mean Width Axis Depth Axis

Input Mean
Image Body Measurement and Body Shape Distribution Prediction Body Body Shape Distribution Prediction

Figure 6: Comparison between our predicted Gaussian measurement distributions and SMPL
B distributions from Sengupta et al. [16] on images from our two private datasets of tape-
measured humans, “A-Pose Subjects” (rows 1-4) and “Varying-Pose Subjects” (rows 5-7).
Similar to Figure 5, measurement distribution prediction results in intuitive local shape un-
certainty when given images with different global body orientations, while predictions from
the SMPL S distribution network of [16] do not appear to be related to the shape information
present in the input (as dictated by the subject’s global body orientation, pose or occlusions).
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Figure 7: Examples of synthetic RGB training images and corresponding edge-image + 2D
joint heatmap proxy representations. Images within each group of 3 use the same pose
(selected from common 3D SMPL pose datasets [5, 10, 19]) but different random body
shapes, clothing textures, backgrounds and lighting parameters. The synthetic RGB images
are computationally cheap and far from photorealistic - however, edge-filtering significantly
reduces the synthetic-to-real domain gap.

Front Left Back Right Front Left Back Right

Figure 8: Examples of synthetic RGB evaluation images and corresponding edge-image +
2D joint heatmap proxy representations used for the ablation studies presented in the main
manuscript. Each of the 1000 random body shapes in the synthetic evaluation dataset are
posed in 4 different configurations, facing forwards, left, backwards and right.


Citation
Citation
{Ionescu, Papava, Olaru, and Sminchisescu} 2014

Citation
Citation
{Lassner, Romero, Kiefel, Bogo, Black, and Gehler} 2017

Citation
Citation
{von Marcard, Henschel, Black, Rosenhahn, and Pons-Moll} 2018


SUPPLEMENTARY: PROBABILISTIC HUMAN SHAPE & POSE WITH A LOCAL MODEL 9

Hyperparameter | Value
Camera translation sampling mean (0, -0.2, 2.5) metres
Camera translation sampling variance (0.05, 0.05, 0.25) metres
Camera focal length 300.0
Lighting ambient intensity range (0.4, 0.8)
Lighting diffuse intensity range (0.4,0.8)
Lighting specular intensity range (0.0, 0.5)
Proxy representation dimensions 256 x 256 pixels
Bounding box scale factor range (0.8, 1.2)
Body part occlusion probability (divided into 24 0.1
DensePose [4] parts)

2D joints L/R swap probability (for shoulders, elbows, 0.1

wrists, hips, knees, ankles)

Vertical/horizontal half occlusion probability 0.05/0.05

2D joint heatmap removal probability 0.1

2D joint heatmap location noise range [-8, 8] pixels

Table 1: Hyperparameter values associated with random synthetic training data generation
and augmentation.

Method ‘ Single-Image Inference Time (ms)
GraphCMR [9] 33
HMR [6] 30
SPIN [8] 30
DaNet [22] 160
STRAPS [14] 250
Sengupta et al. [16] 250
Ours 140

Table 2: Comparison of single-image inference run-times (in milliseconds) for different 3D
shape and pose estimation approaches. Methods in the top half do not use proxy represen-
tation inputs, while methods in the bottom half do. Proxy representations enable the use of
synthetic training data (by closing the synthetic-to-real domain gap), thus overcoming the
lack of real training data with accurate and diverse body shape labels. However, proxy rep-
resentation computation during inference significantly increases run-time. Our approach is
faster than recent approaches that use silhouette-based proxy representations [14, 16], since
edge-detection is a less-intensive operation than deep-learning-based segmentation. Most
(90%) of our inference time is due to 2D joint detection [20].
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