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A Ablation Study

A.1 Which transformer features to choose?

As explained in subsection 3.2 of the main paper, we chose to use the keys kp of the last
attention layer as patch features fp in LOST. As we will see here, this choice provides the best
localization performance among other alternatives. Specifically, in the first section of Table 5,
we report the performance of LOST when using as patch features fp either the keys kp, the
queries qp, or the values vp of the attention layer. We see that, when using the queries qp or
the values vp, LOST’s performance deteriorates by at least 11 CorLoc points compared to
using the keys kp.

Another way to measure the similarity between two patches in a transformer architecture
is to use the scalar product between the queries and the keys. We thus test substituting

ãpq =

{
1 if q>p kq +k>p qq ≥ 0,
0 otherwise,

(4)

for apq in Eq. (1) in the main paper, when selecting the first, initial seed. Note that this choice
of ãpq ensures the symmetry of the adjacency matrix. We test this new choice of similarity
matrix when using the queries, keys or values in the seed expansion step, i.e., in S , and in the
box extraction steps, i.e., in m as defined in Eq. (3) in the main paper.

Finally, we also test another alternative by changing the definition of S to S̃ = {q | q ∈
Dk and q>q kp∗ +k>q qp∗ ≥ 0} and changing the definition of mq in Eq. (3) to

m̃q =

{
1 if ∑s∈S

(
k>q qs +q>q ks

)
≥ 0,

0 otherwise.
(5)

Results in Table 5 show that all these alternatives using queries and keys yield results that are
not as good as when using the keys as patch features.
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Seed selection Expansion & Box extrac. k CorLoc

apq with fp,q = qp,q in Eq. (1) fp = qp in S and mq 100 30.8
apq with fp,q = vp,q in Eq. (1) fp = vp in S and mq 100 50.5
apq with fp,q = kp,q in Eq. (1) fp = kp in S and mq 100 61.9

ãpq defined in 4 fp = qp in S and mq 100 30.8
ãpq defined in 4 fp = vp in S and mq 100 29.9
ãpq defined in 4 fp = kp in S and mq 100 30.7
ãpq defined in 4 using S̃ and m̃q 100 30.8

apq with fp,q = kp,q in Eq. (1) fp = kp in S and mq 1 38.3
apq with fp,q = kp,q in Eq. (1) fp = kp in S and mq 50 58.8
apq with fp,q = kp,q in Eq. (1) fp = kp in S and mq 150 61.8
apq with fp,q = kp,q in Eq. (1) fp = kp in S and mq 200 61.2

Table 5: Ablation study. CorLoc performance on VOC2007 for different choices of transformer
features in the seed selection, expansion and box extraction steps, as well as influence on the results of
the parameter k (maximum number of patches with the lowest degree, in Dk, for seed expansion).

A.2 Importance of the seed expansion step
We analyse here the importance of the seed expansion step that is controlled by k. The seed
expansion step allows us to enlarge the region of interest so as to include all the parts of an
object and not only the part localized from the first, initial seed.

Table 5 presents the impact of the parameter k, which corresponds to the maximum number
of patches that can be used to construct the mask m. We notice that, without seed expansion
(i.e., k = 1), there is a drastic drop in the localization performance. The performance then
improves when increasing k to 100-150 with a slight decrease at 200.

Visualizations of results with k = 1 and k = 100 are presented in the Figure 3 of the main
paper and Figure 4 here. We see that the boxes in yellow obtained with k = 1 are small and
localized on probably what is the most discriminative part of the objects. Increasing k permits
us to increase the size of the box and localize the object better. We also present in Figure 5
cases of failures where the seed expansion step is either insufficient to localize the whole
object or yields a box containing multiple objects.

A.3 Analysis of DINO-seg
In this section, we investigate alternative setups of the baseline DINO-seg which is based on
the work of Caron et al. [13]. They are presented in Table 6.

First, instead of using the best attention head over the entire dataset (as we did in the main
paper), we evaluate the localization accuracy of DINO-seg for each one of the 6 available
heads. We find out that one head in particular, namely head 4, captures objects well, whilst
results with other heads are much lower. Due to its superior performance, in the main paper
we report DINO-seg using head 4.

We also explore dynamically selecting one box per image among boxes corresponding to
the different heads using some heuristics. We report the two variants that gave the best results.
In the first variant, we consider selecting the box corresponding to the head with the biggest
connected component (‘DINO-seg BCC’). However, it yields worse results than with head 4.
We also try selecting, over the 6 boxes of the different heads, the box that has the highest
average IoU overlap with the remaining 5 boxes (‘DINO-seg HAIoU’). It improves over
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Method VOC07_trainval VOC12_trainval COCO20k

DINO-seg [head 0] 25.9 24.6 30.1
DINO-seg [head 1] 36.2 35.9 35.8
DINO-seg [head 2] 32.1 33.2 31.6
DINO-seg [head 3] 21.6 20.0 26.3
DINO-seg [head 4] 45.8 46.2 42.1
DINO-seg [head 5] 35.5 42.1 26.5
DINO-seg BCC 38.8 45.2 28.8
DINO-seg HAIoU 46.1 47.6 40.8

LOST (ours) 61.9 64.0 50.7

Table 6: DINO-seg ablation study. We compare here CorLoc results on datasets VOC07_trainval,
VOC12_trainval and COCO20k when applying the DINO-seg method to create a box from the different
heads of the attention layer. Also, DINO-seg BCC selects the box/head that produces the biggest
connected component, and DINO-seg HAIoU selects the box/head that has the highest average IoU with
the other 5 boxes. We additionally report results with our method LOST for comparison.

Number K of clusters 20 25 30 40

Mean AP (%) 29.9 29.4 34.0 32.2

Table 7: Impact of number of clusters in object detection. Results, using the mean AP@0.5 (%)
across all the classes, on VOC07 test. All models are trained using LOST’s pseudo-boxes (i.e., LOST +
OD) on the VOC07 and VOC12 trainval sets. The number of classes in VOC is 20.

DINO-seg [head 4] by 1 point on both VOC07 and VOC12. However, as shown in Table 6, it
still performs significantly worse than LOST in this single-object discovery task.

A.4 Impact of the number of clusters on class-aware detection training
For the unsupervised class-aware detection experiments of the main paper, we assume that
we know the exact number of object classes present in the used dataset, i.e., 20 in the VOC
dataset, and use the same number of K-means clusters. Here we only assume that we have
a rough estimate of the number of classes and study the impact of the requested number of
clusters on the performances of the unsupervised detector.

To that end, in Table 7, we provide the mean AP across all the 20 VOC classes when
using 20, 25, 30 and 40 clusters. For the case when we use more clusters than the 20 classes
of the VOC dataset, Hungarian matching, which is used for reporting the AP results, will
map to the VOC classes only the 20 most fitted available clusters. Thus, when reporting the
per-class AP results, we ignore the detections in these unmatched clusters (since they have
not been mapped to any ground-truth class).

In Table 7, we observe that our unsupervised detector achieves good results for all the
numbers of clusters. Interestingly, for 30 and 40 clusters there is a noticeable performance
improvement. Similar findings have been observed on prior clustering work [2, 36, 61].

A.5 Impact of the non-determinism of the K-means clustering
We investigate the impact of the randomness in the K-means clustering on the results of the
object detector. To that end, we repeat 4 times, using different random seeds, the unsupervised
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Method VOC07_noh VOC12_noh

OSD [67] 40.7 -
DDT+ [72] 43.4 46.3
rOSD [68] 49.3 51.2
LOD [69] 48.0 50.5
LOST 54.9 57.5

Table 8: CorLoc results on the VOC07_noh and VOC12_noh datasets.

class-aware object detection experiment with LOST + OD† (using the model trained on the
union of VOC07 and VOC12 trainval sets, cf. Table 3 in subsection 4.3 of the main paper).
We obtain a standard deviation of 0.8 for the AP@0.5 %, which shows that the method is
fairly insensitive to the randomness of the clustering method.

B More quantitative results and comparisons

B.1 Results on more datasets used in previous work

For completeness, we present in Table 8 results on the datasets used in previous object discov-
ery works [67, 68, 69, 72]. In particular, we evaluate our method on the datasets VOC07_noh
and VOC12_noh datasets (also named VOC_all in literature). They are subsets of the trainval
set of the well-known PASCAL VOC 2007 and PASCAL VOC 2012 datasets containing
3550 and 7838 images respectively. These subsets exclude all images containing only objects
annotated as “hard” or “truncated” and all boxes annotated as “hard” or “truncated”.

B.2 Multi-object discovery results

We compare in Table 9 the object discovery performance of different methods in the setting
where multiple regions are returned per image. This setting has been explored in [68] and [69].

Following [69], instead of considering the object recall (detection rate) for a given number
of predicted regions per image, as in [68], we consider as a metric a form of Average Precision
adapted to the task, that we name here “odAP”. It is the average of the AP of predicted objects
for each number of predicted regions, from one to the maximum number of ground-truth
objects in an image in the dataset. This odAP metric thus does not depend on the number
of detections per image and remains related to AP, which is a standard metric for object
detection. [69] actually uses two variants of this metric: odAP50, where a prediction is correct
if its intersection-over-union (IoU) with one of the ground-truth boxes is at least 0.5, and
odAP@[50-95], the average odAP value at 10 equally-spaced values of the IoU threshold
between 0.5 and 0.95.

As LOST only returns one region per image, we only consider here LOST + CAD, which
is the output of a class-agnostic detector (CAD) trained with LOST boxes, and we compare
it to other existing approaches. It can be seen that LOST + CAD outperforms significantly
all the previous methods, including the class-agnostic detector trained with LOD [69] boxes
(LOD [69] + CAD).
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Method
odAP50 odAP@[50-95]

VOC07_trainval VOC12_trainval COCO20k_trainval VOC07_trainval VOC12_trainval COCO20k_trainval

Kim et al. [38] 9.5 11.8 3.93 2.49 3.11 0.96
DDT+ [72] 8.7 11.1 2.41 3.0 4.1 0.73
rOSD [68] 13.1 15.4 5.18 4.29 5.27 1.62
LOD [69] 13.9 16.1 6.63 4.47 5.34 1.98
LOD [69] + CAD 15.8 20.9 7.26 5.03 7.07 2.28
LOST + CAD 19.8 24.9 7.93 6.71 8.85 2.51

Table 9: Multi-object discovery performance in odAP (Average Precision for object discovery) of our
method and the baselines [38, 68, 69, 72].

B.3 Image nearest neighbor retrieval
Following LOD [69], we use LOST box descriptors to find images that are similar to each
other (image neighbors) in the image collection.

To this end, each image is represented by the CLS descriptors of its LOST box and the
cosine similarity between these descriptors is used to define a similarity between the images.
Then, for each image, the top τ images with the highest similarity are chosen as its neighbors.
Similar to LOD [69], we choose τ = 10 and use CorRet [15] as the evaluation metric, defined
as the average percentage of the retrieved image neighbors that are actual neighbors (i.e., that
contain objects of the same category) in the ground-truth image graph over all images.

We compare the performance of our method in this task with rOSD [68] and LOD [69] in
Table 10. We see that LOST boxes, when represented by DINO [13] features, yield the better
CorRet score compared to [68, 69]. When VGG16 [55] features are used, LOST is behind
LOD [69] but better than rOSD [68].

Method Features CorRet (%)

rOSD [68] VGG16 [55] 64
LOD [69] VGG16 [55] 70
LOST (ours) VGG16 [55] 68
LOST (ours) DINO [13] 72

Table 10: Image neighbor re-
trieval performance (CorRet) of
different methods.

Method Features
CorLoc (%)

VOC07_trainval VOC12_trainval COCO20k_trainval

LOD [69] VGG16 [55] 53.6 55.1 48.5
LOD [69] DINO [13] 43.2 45.9 33.7
LOST (ours) VGG16 [55] 42.0 47.2 30.2
LOST (ours) DINO [13] 61.9 64.0 50.7

Table 11: Single-object discovery performance in CorLoc of
LOD [69] and LOST with different types of features.

B.4 Using DINO features
We are aware that, in Table 1 of the main paper, we compare our method using a transformer
backbone to methods based on a VGG16 pre-trained on ImageNet models. For a fair com-
parison, we investigate here the state-of-the-art LOD [69] method when adapted to use the
transformers features.

LOD [69] uses the algorithm from rOSD [68] to generate region proposals from CNN
features for their pipeline, but we observe that this algorithm does not yield good proposals
with transformer features. We therefore run LOD with edgeboxes [84] and use DINO [13]
features, extracted with ROIPool [27], to represent these proposals. We present the results on
VOC07_trainval, VOC12_trainval and COCO20k_trainval dataset in Table 11.

Our results in Table 2 of the main paper show that a direct adaption of LOST, designed by
analysing the properties of transformers features, to CNN features yields worse performance.
Conversely, as we see in Table 11 here, adapting algorithms developed using properties of
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CNN features to transformer features is also not direct. Nevertheless, the number of design
choices to adapt these algorithms to new types of features is vast and we do not exclude that
some design choices might improve the results even further, e.g., by exploiting together CNN
and transformer features.

B.5 Using supervised pre-training.
We test LOST but this time using a transformer pre-trained under full supervision on ImageNet.
We use the model provided by DeiT [62].

With this model, LOST achieves a CorLoc of 16.9% which is significantly worse than the
results obtained with the DINO self-supervised pre-trained model. We remark that a similar
observation was made for DINO [13], where the segmentation performance obtained with
the model trained under full supervision yields significantly worse results than when using
DINO’s model. It is unclear, however, if this difference of performance can be attributed to
the properties of the self-supervision loss or to the more aggressive data augmentation used
during DINO pre-training.

C More visualizations (single- and multi-object discovery)
We present in Figures 4-9 additional qualitative results of our method.

Figure 4 and Figure 5 are discussed in the subsection A.2.
Figure 6 and Figure 7 show successful examples of LOST + CAD in VOC07_trainval and

COCO20k_trainval datasets. It can be seen that it is able to localize multiple objects in the
same image.

Figure 8 and Figure 9 present results obtained with LOST + OD on the VOC07 and
COCO datasets respectively. They show the localization predictions with their predicted
pseudo-classes. Each pseudo-class is assigned a different color. In Figure 9, the “person"
objects are assigned three different pseudo-classes; those failures show the difficulty to assign
the same class to “person” in very different positions.

D Training details of the Faster R-CNN detection models
In the main paper, we explore the application of LOST in unsupervised object detection by
using its pseudo-boxes as ground truth for training Faster R-CNN detection models.

For the implementation of the Faster R-CNN detector, we use the R50-C4 model of
Detectron2 [73] that relies on a ResNet-50 [32] backbone. In our experiments, this ResNet-50
backbone is pre-trained with DINO self-supervision. Then, to train the Faster R-CNN model
on the considered dataset, we use the protocol and most hyper-parameters from He et al. [34].

In details, we train with mini-batches of size 16 across 8 GPUs using SyncBatchNorm
to finetune BatchNorm parameters, as well as adding an extra BatchNorm layer for the RoI
head after conv5, i.e., Res5ROIHeadsExtraNorm layer in Detectron2. During training,
the learning rate is first warmed-up for 100 steps to 0.02 and then reduced by a factor of 10
after 18K and 22K training steps. We use in total 24K training steps for all the experiments,
except when training class-agnostic detectors on the pseudo-boxes of the VOC07 trainval set,
in which case we use 10K steps. For all experiments, during training, we freeze the first two
convolutional blocks of ResNet-50, i.e., conv1 and conv2 in Detectron2.
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Figure 4: Object localization on VOC07. The red square represents the seed p∗, the yellow
bos is the box obtained using only the seed p∗, and the purple box is the box obtained using
all the seeds S with k = 100.



24 SIMEONI ET AL.: LOST

Figure 5: Cases of localization failure on VOC07. The red square represents the seed p∗,
the yellow box is the box obtained using only the seed p∗, and the purple box is the box
obtained using all the seeds S with k = 100.

Figure 6: Multi-object discovery on VOC07 (LOST + CAD). Predictions performed by the
class-agnostic detector on VOC07.
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Figure 7: Multi-object discovery on COCO (LOST + CAD). Predictions performed by the
class-agnostic detector on COCO.

Figure 8: Multi-object discovery on VOC07 (LOST + OD). Predictions performed by the
class-aware detector on VOC07 (a different color per class).
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Figure 9: Multi-object discovery on COCO (LOST + OD). Predictions performed by the
class-aware detector on COCO (a different color per class). The actual “person” class is
assigned three different pseudo-classes, illustrating the difficulty to see a single category for a
“person” in very different positions.


