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Supplementary Material of the BMVC 2021 Paper:
FFNB: Forgetting-Free Neural Blocks for Deep Continual
Learning
This supplementary material includes the following items

• Incremental learning algorithms 1 and 2 (as discussed in section 3) of the paper.

• Detailed proof of proposition 1.

• Experiments showing the impact of the number of FFNB-layers on SBU and FPHA
(tables 8 and 9).

• Experiments showing the impact of the band-size allowed to each task in the feature
maps of FFNB on SBU and FPHA (tables 10 and 11); see also section 4.1 in the paper.

• Experiments showing the impact of pretraining the backbone network + FFNB fine-
tuning on SBU and FPHA (tables 12 and 13); see also section 4.2 in the paper. Extra
experiments are shown (in table 24) w.r.t. increasing sizes of pretraining data.

• Experiments showing a comparison between the aggregated “one-vs-one” classifiers
w.r.t. the usual “one-vs-all” classifiers (tables 14 and 15); see also section 3.2.3.

• Analysis of different factors intervening in the bound (in Eq. 2): these factors corre-
spond to dimension, weight decay regularization, and activation functions (tables 16,
17, 18, 19, 20 and 21).

• Experiments showing the impact of the batch-normalization with and without our co-
variance normalization on SBU and FPHA (tables 22 and 23) + a detailed justification
about the performances in the underlying caption.

• And, experiments on CIFAR100, including comparisons w.r.t. the closely related work
(tables 25, 26, 27 and 28).
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Algorithms

Algorithm 1: Incremental learning
Input: Sequential tasks T1, . . .TT .
Output: Trained network parameters {W`,t}t,`.

for t := 1 to T do
repeat

Backward: back-propagate ∂E
∂ψL+1

and get ∂E
∂W`,t

;

W`,t ←W`,t −ν
∂E

∂W`,t
; // being ν the learning rate

Keep the parameters {W`,r}r 6=t of the other tasks unchanged;
Forward: update the outputs {ψ`(Xt)}` on the current task t;

until convergence or max nbr of iterations reached;

Algorithm 2: Updated incremental learning
Input: Sequential tasks T1, . . .TT .
Output: Trained network parameters {W`,t}t,`.

for t := 1 to T do
Set {Φ`}` layerwise using PCA on the previous task outputs {ψ`(XP)}`.
Set {α`,t}` using Eq. (4) or (5).
repeat

Backward: back-propagate ∂E
∂ψL+1

and get { ∂E
∂W`,t
}`;

∂E
∂α`,t
← ∂E

∂W`,t

∂W`,t
∂α`,t

;

α`,t ← α`,t −ν
∂E

∂α`,t
,∀` ∈ {1, . . . ,L};

Update W`,t using Eq. (1) and keep {W`,r}r 6=t of the other tasks unchanged;
Update {WL,(t,r)}r∈P using Eq. (7) and keep the others unchanged;
Forward: update the outputs {ψ`(Xt)}` on the current task t;

until convergence or max nbr of iterations reached;
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Analysis on SBU and FPHA
In all the following tables, “null-space + heteroscedasticity + multi-task initialization” set-
tings are used (following the ablation study in tables 3 and 4 in the paper). The number of
FFNB feature layers and band-sizes are set to 3 (excepting particular settings in tables 8, 9
and 10, 11 respectively) and FFNB activations correspond to ReLU (excepting particular
settings in tables 16 and 17). Pretraining and fine-tuning is always used (excepting particular
settings in tables 12 and 13). Our aggregated “one-vs-one” classifiers are also used in all
these tables (excepting particular settings in tables 14 and 15).

Note that accuracy when handling the first task in SBU is necessarily equal to 100% as the
first task includes only one class, while in FPHA the first task includes 5 classes, so the
accuracy is lower (see again captions of tables 1, 2, 3 and 4 in the paper).

XXXXXXXXXX# layers
Tasks T1 T2 T3 T4 T5 T6 T7 T8

2 Layers 100.00 100.00 96.42 89.47 81.39 79.16 72.41 70.76
3 Layers 100.00 100.00 100.00 100.00 97.67 89.58 89.65 84.61
4 Layers 100.00 100.00 96.42 97.36 93.02 93.75 75.86 76.92

Table 8: Impact of the number of layers in the FFNB-features on the performances using
SBU (in these experiments, p = 45).

XXXXXXXXXX# layers
Tasks T1 T2 T3 T4 T5 T6 T7 T8 T9

3 Layers 68.25 58.73 64.76 63.70 62.84 61.24 64.96 66.01 67.47
4 Layers 53.96 44.44 35.75 40.15 46.13 44.96 46.78 45.50 46.95

Table 9: Impact of the number of layers in the FFNB-features on the performances using
FPHA (in these experiments, p = 75).

XXXXXXXXXXBand size
Tasks T1 T2 T3 T4 T5 T6 T7 T8

1 100.00 100.00 100.00 92.10 86.04 87.50 82.75 64.61
3 100.00 100.00 100.00 100.00 97.67 89.58 89.65 84.61
5 100.00 100.00 100.00 100.00 100.00 95.83 91.37 81.53
7 100.00 100.00 100.00 94.73 90.69 89.58 77.58 67.69
9 100.00 95.00 92.85 94.73 93.02 89.58 82.75 73.84

Table 10: Impact of band-size on the performances using SBU (again p = 45).
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XXXXXXXXXXBand size
Tasks T1 T2 T3 T4 T5 T6 T7 T8 T9

1 68.25 55.55 60.62 62.16 59.75 60.46 61.86 62.10 62.43
3 68.25 58.73 64.76 63.70 62.84 61.24 64.96 66.01 67.47
5 63.49 53.17 60.10 57.52 57.58 56.58 60.31 61.91 61.91
7 58.73 50.00 58.54 61.00 59.13 52.97 55.87 59.96 60.17
9 61.90 51.78 51.38 53.87 51.93 58.13 60.22 62.32 62.69

Table 11: Impact of band-size on the performances using FPHA (p = 75).

Pretraining Fine-tuning T1 T2 T3 T4 T5 T6 T7 T8

7 7 100.00 100.00 97.36 95.34 93.75 87.93 83.07 83.07
7 3 100.00 100.00 97.36 93.02 87.50 87.93 84.61 84.61
3 7 100.00 100.00 100.00 97.36 90.69 87.50 87.93 83.07
3 3 100.00 100.00 100.00 100.00 97.67 89.58 89.65 84.61

Table 12: Impact of pretraining and fine-tuning on the performances using SBU (here p =
45).

Pretraining Fine-tuning T1 T2 T3 T4 T5 T6 T7 T8 T9

7 7 63.15 59.52 59.58 58.30 58.82 57.10 60.75 62.89 63.13
7 3 64.47 60.86 62.43 56.08 58.20 55.13 58.74 58.96 60.34
3 7 68.25 59.52 61.65 61.77 59.13 58.39 60.31 61.52 63.30
3 3 68.25 58.73 64.76 63.70 62.84 61.24 64.96 66.01 67.47

Table 13: Impact of pretraining and fine-tuning on the performances using FPHA (here
p = 75).

````````````FFNB classifiers
Tasks T1 T2 T3 T4 T5 T6 T7 T8

“One-vs-all” classifiers 100.00 100.00 82.14 81.57 65.11 66.66 60.34 55.38
Our aggregated “one-vs-one” classifiers 100.00 100.00 97.36 93.02 87.50 87.93 84.61 84.61

Table 14: Impact of FFNB-classifiers on the performances using SBU (in these experiments,
p = 45).

````````````FFNB classifiers
Tasks T1 T2 T3 T4 T5 T6 T7 T8 T9

“One-vs-all” classifiers 38.09 29.36 47.66 43.62 36.53 36.17 35.25 35.74 35.65
Our aggregated “one-vs-one” classifiers 68.25 58.73 64.76 63.70 62.84 61.24 64.96 66.01 67.47

Table 15: Impact of FFNB-classifiers on the performances using FPHA (in these experi-
ments, p = 75).

hhhhhhhhhhhhhhhhFFNB-Activations
Performances

CF Bound in Eq (2) Accuracy (@final task T8)

Tanh 0.1581 72.30
Sigmoid 5.75 ×10−5 76.92
ReLU 15.98 ×10−7 84.61

Table 16: Impact of activations on the catastrophic forgetting (CF) bound and performances
using SBU (p = 45).
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hhhhhhhhhhhhhhhhFFNB-Activations
Performances

CF Bound in Eq (2) Accuracy (@final task T9)

Tanh 19.23 60.86
Sigmoid 18.52 60.86
ReLU 0.288 67.47

Table 17: Impact of activations on the CF bound and performances using FPHA (p = 75).

hhhhhhhhhhhhhhhDimensions
Performances

CF Bound in Eq (2) (×10−7) Accuracy (@final task T8)

p = 15 25618.3 81.53
p = 25 437.39 83.07
p = 35 64.12 81.53
p = 45 15.98 84.61
p = 50 7.80 73.84
p = 55 2.54 69.23

Table 18: Impact of dimensions (p) on the CF bound and performances using SBU (with
ReLU). From these results, small p leads to CF while large p to low dimensional and noisy
null-space (and hence low generalization), so the best performances are obtained when suf-
ficiently (but not very) large p-values are selected.

hhhhhhhhhhhhhhhDimensions
Performances

CF Bound in Eq (2) Accuracy (@final task T9)

p = 15 425.716411 63.82
p = 30 11.005551 61.56
p = 45 2.656760 63.30
p = 60 0.836268 64.69
p = 75 0.288356 67.47
p = 90 0.115226 60.69

p = 105 0.043147 60.00
p = 120 0.015686 57.21

Table 19: Impact of dimensions (p) on the CF bound and performances using FPHA (with
ReLU). Again, from these results, small p leads to CF while large p to low dimensional and
noisy null-space (and hence low generalization), so the best performances are obtained when
sufficiently (but not very) large p-values are selected.

hhhhhhhhhhhhhhhhhhWeight decay coefficient

Performances
CF Bound in Eq (2) (×10−7) Accuracy (@final task T8)

10−8 15.98 84.61
10−7 15.86 83.07
10−6 14.89 81.53
10−5 7.59 78.46
10−4 6.59 78.46
10−3 4.51 81.53
10−2 2.10 76.92

Table 20: Impact of weight decay regularization on the CF bound and performances using
SBU (with ReLU and p = 45).
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hhhhhhhhhhhhhhhhhhWeight decay coefficient

Performances
CF Bound in Eq (2) Accuracy (@final task T9)

10−8 0.288356 67.47
10−7 0.281536 64.00
10−6 0.238607 64.17
10−5 0.170736 55.13
10−4 0.134717 55.82
10−3 0.116821 47.65
10−2 0.139448 47.47

Table 21: Impact of weight decay regularization on the CF bound and performances using
FPHA (with ReLU and p = 75).

Batch-norm Heteroscedasticity T1 T2 T3 T4 T5 T6 T7 T8

7 7 100.00 100.00 100.00 97.36 90.69 87.50 82.75 75.38
7 3 100.00 100.00 100.00 100.00 97.67 89.58 89.65 84.61
3 7 100.00 85.00 67.85 55.26 41.86 33.33 32.75 29.23
3 3 100.00 100.00 96.42 100.00 95.34 95.83 93.10 83.07

Table 22: Impact of batch-norm (BN), with and w/o our class-wise covariance normalization,
on SBU (here p = 45). The reason why BN is degrading performances is not intrinsically
related to the BN itself (which is known to be effective in the general multi-task setting),
but due to the incremental setting (i.e., due to the interference introduced by the BN on the
previous tasks; put differently, the feature maps of the FFNB network on the previous tasks
are no longer guaranteed to belong to the residual space when BN is applied).

Batch-norm Heteroscedasticity T1 T2 T3 T4 T5 T6 T7 T8 T9

7 7 76.19 67.46 64.76 62.93 62.84 61.24 59.42 58.00 54.95
7 3 68.25 58.73 64.76 63.70 62.84 61.24 64.96 66.01 67.47
3 7 52.38 45.23 34.71 32.81 36.22 39.53 39.24 45.31 49.21
3 3 74.60 57.93 33.16 44.01 48.60 53.74 58.09 58.98 57.39

Table 23: Impact of batch normalization (with and wo covariance normalization) on FPHA
(here p = 75). We observe a similar behavior as SBU (see caption of the previous table).

Configuration T1 T2 T3 T4 T5 T6 T7 T8 T9

no-pretraining 63.15 59.52 59.58 58.30 58.82 57.10 60.75 62.89 63.13
pretraining (25% of pretraining data) 68.25 49.20 55.95 58.30 63.46 61.49 62.97 62.69 63.47
pretraining (50% of pretraining data) 57.14 56.34 63.21 61.77 60.68 62.27 63.85 63.28 63.82

pretraining (100% of pretraining data) 68.25 58.73 64.76 63.70 62.84 61.24 64.96 66.01 67.47

Table 24: Impact of backbone pretraining on the performances using FPHA (here p = 75).
Results shown in this table provide an idea about the behavior of our FFNB w.r.t. increasing
pretraining sets and also w.r.t. no-pretraining of the backbone. In spite of no-pretraining,
FFNB (also endowed with feature map layers) is able to adapt the features to the new in-
cremental tasks prior to achieve classification. This is possible thanks to the new dynamic
parameters of the current task which are trained in the null-space of the previous tasks, and
this mitigates CF.
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Evaluation on CIFAR100 and SOTA Comparison

In all the following tables, “null-space + heteroscedasticity + multi-task initialization” set-
tings are used. On CIFAR100, the band-size=1, size of minibatch=32, optimizer=SGD,
learning rate fixed to 10e-3 and neither weight decay nor momentum are used.

XXXXXXXXXXTest classes
Tasks T0 T1 T2 Average Incremental Acc.

Top-50 classes 83.66 76.18 68.40 76.08
50 – 75 – 60.96 51.52 56.24
75 – 100 – 60.68 60.68
Average Task Acc. 83.66 71.11 62.25 72.34

Table 25: Results on CIFAR100-B50-S2. As suggested by the standard evaluation proto-
col, the first 50 classes ([1-50]) are used to pretrain the “EfficientNet” backbone, while the
remaining 50 classes ([51-100]) are used for incremental task learning. Here B50 stands
for these 50 pretraining classes and S2 for tasks T1 and T2 which are learned incrementally
(here T1 corresponds to classes [51-75] and T2 to [76-100] while T0 is the pretraining task
involving classes [1-50]). Average Incremental Acc is proposed in iCaRL [RKSL17] which
is averaged across tasks. The symbol “–” stands for “accuracy not available” as classes are
incrementally visited so training+test data, belonging to the subsequent tasks, are obviously
not available beforehand.

XXXXXXXXXXTest classes
Tasks T0 T1 T2 T3 T4 T5 Average Incremental Acc.

Top-50 classes 83.66 79.26 74.74 70.76 64.76 58.18 71.89
50 – 60

–

76.80 71.30 67.00 58.20 50.30 64.72
60 – 70

–

63.10 57.10 50.00 41.50 52.93
70 – 80

–
69.10 61.10 52.60 60.73

80 – 90 – 75.50 69.00 72.25
90 – 100 – 70.90 70.90
Average Task Acc. 83.66 78.55 72.59 68.38 63.18 57.52 70.70

Table 26: Results on CIFAR100-B50-S5. The caption of this table is similar to table 25
excepting the number of tasks which is now equal to 5.

We use EfficientNet [TL19] as our backbone which is state-of-the-art feature extractor
architecture. Comparison shown in table 28 are w.r.t. the following related work

• [HPL+19] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a
unified classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 831–839, 2019.

• [HTM+21] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-Sheng Hua, and Hanwang Zhang.
Distilling causal effect of data in class-incremental learning. arXiv preprint arXiv:2103.01737,
2021.

• [RKSL17] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lam-
pert. icarl: Incremental classifier and representation learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 2001–2010, 2017.
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XXXXXXXXXXTest classes

Tasks T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Average Incremental Acc.

Top-50 classes 83.66 80.98 78.02 73.90 71.32 68.20 64.82 61.42 57.52 52.60 49.42 67.44
50 – 55

–

79.20 71.60 70.40 65.80 58.00 56.60 43.80 43.60 34.00 26.00 54.90
55 – 60

–

89.40 84.00 74.20 71.40 68.60 63.80 61.80 60.20 57.00 70.04
60 – 65

–

62.80 58.00 56.40 46.00 43.40 35.20 31.00 24.20 44.63
65 – 70

–

73.60 73.20 66.40 62.80 55.40 50.80 43.00 60.74
70 – 75

–

80.60 76.40 68.00 59.40 47.80 41.60 62.30
75 – 80

–

80.80 80.20 71.20 67.60 62.40 72.44
80 – 85

–

87.40 73.00 62.80 57.20 70.10
85 – 90

–
85.00 83.40 79.00 82.47

90 – 95 – 82.60 74.60 78.60
95 – 100 – 80.40 80.40
Average Task Acc. 83.66 80.82 78.43 73.55 70.34 68.11 65.19 62.56 58.88 55.06 51.98 68.05

Table 27: Results on CIFAR100-B50-S10. The caption of this table is similar to table 25
excepting the number of tasks which is now equal to 10.

Methods 2 tasks (S2) 5 tasks (S5) 10 tasks (S10)
#Params (M) Avg. Acc. #Params (M) Avg. Acc. #Params (M) Avg. Acc.

Upper Bound [YXH21] 11.2 67.38 / 72.22 11.2 79.89 11.2 79.91
iCaRL[RKSL17,YXH21] 11.2 71.33 11.2 65.06 11.2 58.59
UCIR [HPL+19,YXH21] 11.2 67.21 11.2 64.28 11.2 59.92
BiC [WCW+19,YXH21] 11.2 72.47 11.2 66.62 11.2 60.25
WA [ZXG+20,YXH21] 11.2 71.43 11.2 64.01 11.2 57.86
PoDNet [YXH21] 11.2 71.30 11.2 67.25 (64.83) 11.2 64.04 (63.19)
DDE (UCIR R20) [HTM+21] - - 11.2 65.27 11.2 62.36
DDE (PoDNet R20) [HTM+21] - - 11.2 65.42 11.2 64.12
DER(w/o P) [YXH21] 22.4 74.61 39.2 73.21 67.2 72.81
DER(P) [YXH21] 3.90 74.57 6.13 72.60 8.79 72.45
Ours 5.8 72.34 5.8 70.70 5.8 68.05

Table 28: Results on CIFAR100-B50 (modified from Table 2 in DER [YXH21] where num-
bers in blue refer to the results tested by the re-implementation in DER [YXH21] and num-
bers in parentheses refer to the results reported in the original papers).

• [TL19] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, pages 6105–6114. PMLR,
2019.

• [WCW+19] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo,
and Yun Fu. Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 374–382, 2019.

• [YXH21] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable repre-
sentation for class incremental learning. arXiv preprint arXiv:2103.16788, 2021.

• [ZXG+20] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining
discrimination and fairness in class incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13208–13217, 2020.
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Proposition 1
Proposition 1 Let g : R→ R be a L-Lipschitz continuous activation (with L ≤ 1). Any η-
step descent (update) of W`,t in NS(ψ`(XP)) using (1) satisfies ∀r ∈ P∥∥ψ

η

` (Xr)−ψ0
` (Xr)

∥∥2
F ≤ B

with B =
η

∑
τ=1

`−1

∑
k=0

(∥∥α
τ
`−k,t

∥∥2
F .
∥∥β

τ
`−k−1,r

∥∥2
F +

∥∥α
τ−1
`−k,t

∥∥2
F .
∥∥β

τ−1
`−k−1,r

∥∥2
F

)
.

k−1

∏
k′=0

∥∥Wτ
`−k′,P

∥∥2
F ,

(10)
being ψ0

` (Xr) (resp. ψ
η−1
` (Xr)) the map before the start (resp. the end) of the iterative

update (descent on current task Tt ), β τ
`,r the projection of ψτ

` (Xr) onto NS(ψ`(XP)) at any
iteration τ , {Wτ

`,r}` the network parameters at τ , and ‖.‖F the Frobenius norm.

Proof of Proposition 1
At any iteration τ of the descent, one may write ∀r ∈P∥∥ψ

τ
` (Xr)−ψ

τ−1
` (Xr)

∥∥2
F =

∥∥g
(
Wτ

` ψ
τ
`−1(Xr)

)
−g

(
Wτ−1

` ψ
τ−1
`−1 (Xr)

)∥∥2
F

≤
∥∥Wτ

` ψ
τ
`−1(Xr)−Wτ−1

` ψ
τ−1
`−1 (Xr)

∥∥2
F (g L-Lipschitzian with L≤ 1)

=
∥∥Wτ

`,t ψ
τ
`−1(Xr)−Wτ−1

`,t ψ
τ−1
`−1 (Xr)

∥∥2
F

+
∥∥Wτ

`,r ψ
τ
`−1(Xr)−Wτ

`,P ψ
τ−1
`−1 (Xr)

∥∥2
F (Wτ−1

`,P = Wτ
`,P , ∀τ)

≤
∥∥Wτ

`,t ψ
τ
`−1(Xr)−Wτ−1

`,t ψ
τ−1
`−1 (Xr)

∥∥2
F

+
∥∥Wτ

`,P
∥∥2

F .
∥∥ψ

τ
`−1(Xr)−ψ

τ−1
`−1 (Xr)

∥∥2
F (Cauchy Schwarz)

=
∥∥(ατ

`,t)
>

Φ
>

ψ
τ
`−1(Xr)− (ατ−1

`,t )> Φ
>

ψ
τ−1
`−1 (Xr)

∥∥2
F (Eq. 1 in paper)

+
∥∥Wτ

`,P
∥∥2

F .
∥∥ψ

τ
`−1(Xr)−ψ

τ−1
`−1 (Xr)

∥∥2
F

=
∥∥(ατ

`,t)
>

Φ
>

Φ β
τ
`−1,r− (ατ−1

`,t )> Φ
>

Φ β
τ−1
`−1,r
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(
ψ

τ
`−1(Xr) = Φ β

τ
`−1,r

)
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`,P

∥∥2
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∥∥2
F

=
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`,t)
>
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τ
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τ−1
`−1,r

∥∥2
F ({Φd}d orthonormal)

+
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∥∥2

F .
∥∥ψ

τ
`−1(Xr)−ψ

τ−1
`−1 (Xr)

∥∥2
F

≤
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τ
`,t
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τ
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F +
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τ−1
`,t
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+
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F .
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F .

Combining the above inequality using recursion∥∥ψ
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F +
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0 (Xr)−ψ

τ−1
0 (Xr)

∥∥2
F =

∥∥Xr−Xr
∥∥2

F = 0 as the parameters of the convolutional layers of the whole network f
are initially pretrained and fixed, so any incremental training of f maintains {ψ0(Xr)}r unchanged. Considering η

the max number of epochs when training the parameters of the t th task, one may write

∥∥ψ
η

` (Xr)−ψ
0
` (Xr)

∥∥2
F =

∥∥ψ
η

` (Xr)−
η−1

∑
τ=1

ψ
τ
` (Xr)+

η−1

∑
τ=1

ψ
τ
` (Xr)−ψ

0
` (Xr)

∥∥2
F

≤
η

∑
τ=1

∥∥ψ
τ
` (Xr)−ψ

τ−1
` (Xr)

∥∥2
F .

Combining the two above inequalities, it follows

∥∥ψ
η

` (Xr)−ψ
0
` (Xr)

∥∥2
F ≤

η

∑
τ=1

`−1

∑
k=0

(∥∥α
τ
`−k,t

∥∥2
F .
∥∥β

τ
`−k−1,r

∥∥2
F +

∥∥α
τ−1
`−k,t

∥∥2
F .
∥∥β

τ−1
`−k−1,r

∥∥2
F

)
.

k−1

∏
k′=0

∥∥Wτ

`−k′,P
∥∥2

F .
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