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1 Sampling an Incident Light Field

Due to page limit, here we elaborate on how to present a consistent Representation for an
incident light field that is briefly discussed in Section 4.1 in the manuscript.

An good representation for an incident light field in a data-driven scenario is always a
trade-off between expressivity and stability: on the one hand, it has to be expressive enough
so that reflectance signals sampled from different surface normals 7 can be differentiated;
on the other hand, it has to be stable enough with respect to different sampling schemes to
avoid overfitting. In other words, samples of a well-generalized representation in training
data accounts for what is likely to occur during testing, for the input signal can effectively
reduce the size of training data. This work qualitatively addresses the former aspect as it is
related to the concept of appearance flow, and a rigourous analysis on both aspects will be
the focus of our future work.

Similar to “observation map” [1], we partition the hemisphere into multiple disjoint re-
gions. Specifically, we randomly select a set of K unit vectors, L, and each sample generated
falls in a neighborhood of one of the elements of L. Consequently, the samplers generated a
vector X € RX that serves as a standard representation for the appearance flow and can be fed
into a neural network directly. In contrast to the design of “observation map” sets a grid on
the fronto-parallel plane (XY-plane) to describe the lighting distribution, our design defines
the neighborhood using the angular distance (i.e. inner product between two unit vectors)
directly.

During this partitioning process, two scenarios may arise need extra processing: (1)
there is no sampler in the neighborhood, (2) there are multiple samplers fall into the same
neighborhood. As illustrated in Figure 1, in the first case we simply find the nearest neighbor
to interpolate, whereas in the second case we average all samples in the neighborhood. It is
worth noting that this design allows for multiple independent partition schemes, which result
in multiple representations to describe the same incident light field. In reference to Figure
3 in the manuscript, they are processed by different channels in the latent space Z;, where
Z1(6,) is the cross-channel average. Formally speaking, we can setup Ly, L, ..., Ly over N
channels to produce X;(6,), X»(6;) ..., Xy(6,) and
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(1)setup L (2) sampling scheme
Figure 1: (1) If L contains three elements, the flow is represented by vectors in R3. (2) To
obtain a standard representation out of a set of randomly distributed samples, the spherical
surface is partitioned into three regions measured by angular distance. Circles indicate actual
samples and square indicates the center of each region. Each region takes the average value
of the samples in its neighborhood. When no sampler is falling into a region (e.g. region 3),
then we fill this region with the value taken from its nearest neighbor as a replacement.

and in our experiment we use 4 channels to illustrate this idea.

2 Generating Training Data

The training set includes as many combinations of 7,6, and L as possible. L denoting the
distribution of the samples is independent of L and is characterized by two measures: spar-
sity and coverage, where the former has been investigated in details [4], and we do not have
much insight into the latter. To prepare the training set, we make the same assumption as the
“observation map” does, which assumes that an incident light field can be sufficiently sam-
pled by the samplers over the positive hemisphere for shape analysis. As a rule of thumb,we
limit the coverage of both L and L to the positive hemisphere. Specifically, during training,
for each sample, for each sample we randomly select a value Z,,,;, € [0.2,0.7] to determine a
range [Zyin, 1], from which L is sampled and a vector is then generated over the unit-sphere
[3]. In this case, the distribution of the azimuth angles is approximately uniform.

The surface normal, 7, is generated by from a normal map of a sphere, which is dense
and uniformly distributed and represented by 30000 R? unit vectors. The source of our input
is simply the tabulated MERL reflectance data [2] consisting of 100 different materials.

3 Network Architecture

The network architecture is illustrated in Figure 2. It consists of all MLP implementation,
where the input signal consists of 128 pixel values under 128 lightings specified by L. The
output signal is another 128-tuple representing its corresponding Lambertian reflectance.
The first encode-transfer procedure can be carried out over multiple channels. Given N
channels in design (Equation 1), we deploy N distinct instances to produce N latent signals
in R%, and all these signals are averaged to encode one single latent signal in R*®. Corre-
spondingly, there are also N instances of ®,, that generates 128 x N pixel values.
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Figure 2: Network architecture.The input space is in R'?%, and the two latent spaces are
spanned by vectors in R% and R2, respectively. Two transfer operator, ®;,, are implemented
by residual blocks as they are space invariant.The first encode-transfer process, namely, from
R'?8 to R%*, can be carried out in multiple channels for one sample, and a cross-channel
average is performed to encode a single latent signal in R*S.

4 Experiment Settings

The experiment is conducted on a standard PC with a single RTX-2070 GPU of 8G RAM.
Batch size is set to 30000, epoch number is 12, learning rate is 0.001. Each sample vector
is normalized by its maximum value, so all of all of its entries are in [0, 1]. We select 128
directions over the hemisphere to generate L. As there are 4 independent channels, it takes
512 variables to represent an input incident light field. The entire pipeline is implemented
using Matlab Deep Learning Toolbox.

5 Benchmark Performance

With an element in L we can synthesize an image of the scene with Lambertian reflectance.
In addition to comparison of normal map, for illustration purpose, we pick 8 of the total 512
images produced for each scene. L has 96 nights.

The sequence for the normal map comparison is: (1) ground truth, (2) estimation, (3)
error map. The color saturates at error of 40 degrees.

The sequence for the Lambertian reflectance comparison is: (1) ground truth, (2)
estimation by the network, (3) error map of the network estimation. The color saturates
at error of 1. (4) reconstruction from the estimation and L.
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Figure 3: Four different light distributions generated for L, one for a channel. Each distribu-

tion takes 128 samples, so the network decodes one latent signals into four separate vectors
in R'%8.
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