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This supplementary material provides extra details which are not presented in the main
paper due to space limitations. In the following document we discuss the effects of using
various re-sampling resolutions during testing in Sec. 1. In Sec. 2, we provide more in
depth comparison on HPatches and propose a novel evaluation criterion to demonstrate the
effectiveness of the XRCNet. In Sec. 3, we show more qualitative results on InLoc and
Aachen Day-Night dataset, which further demonstrate the quality of the proposed model.
Moreover, in Sec. 4 we demonstrate the accuracy of our XRCNet in the challenging task of
3D reconstruction using the Aachen Day-Night dataset. We conclude with a brief description
of the source code released in Sec. 5.

First of all, we visualise the output feature maps and correlation maps of the key mod-
ules in XRCNet in Fig | to illustrate the effectiveness of the key modules when solving a
correspondence task. We plot 5 examples of various training and testing images. Each is
superimposed with the colour map representing the output feature maps or correlation maps
of the corresponding modules. From left to right, we plot the coarse features maps from the
FPN decoder, the fine feature maps, the 2D coarse correlation map calculated by querying
the key point in the source image into the 4D correlation tensor, the same coarse correlation
map querying into the 4D tensor after the first mutual matching layer and after the second
mutual matching layer respectively. In the end, we plot the final 2D coarse correlation map
and the fine correlation map after the re-weighting. For feature maps, we simply visualise
the max values alone the channels. It can be noticed that the coarse and fine feature map
contains similar patterns except the resolution difference possibly due to the original design
of FPN layers. The raw 4D correlation tensor does show a peak around the ground truth
point location but also contains significant amount of noise. After two rounds of mutual
matching filtering, most of the noise are suppressed except a few ambiguous candidates, and
the final re-weighting allows the network to look into the local area in detail so that XRCNet
can make correct predictions in the end.
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1 Effects of Different Re-sampling Resolutions

In this section we present both qualitative and quantitative analysis on HPatches when re-
sampling the testing images into various resolutions. As shown in Fig. 2, we varied the input
image resolution from 720 to 3840 (4K) with a step size of about 200. From left to right,
we show the Mean Matching Accuracy (MMA) [1, 2] plots for the cases of illumination
challenges, viewpoint challenges, and overall. The native resolution of the HPatches dataset
is reported in Tab. 2 of the main paper.

We observe that the low re-sampling resolution has a major impact on the accuracy in
the viewpoint challenges. In contrast, for illumination challenges, low resolution performs
relatively well for the low error band (< 3 pixels). However, the increased re-sampling
resolution leads to better performance on the illumination challenge at the cost of a small
decrease at the low error band. This is possibly due to stronger ambiguity in the local region
in illumination scenarios. For example, the lighting changes introduce blur around many key
points when transitioning from day to night. As the resolution increases, the predicted key
point locations are more likely to converge towards more repeatable but less accurate areas.
As far as the large error band is concerned, the performance of our method saturates for the
illumination scenario while increasing for the viewpoint challenges as the re-sampling res-
olution increases. The area under the MMA curve is also provided to measure the overall
accuracy. It can be seen that the performance gain using higher re-sampling resolution satu-
rated around 2600 to 3400 with the peak performance at resolution 3000. Note that Fig. 8 in
the main paper provides a clear visualisation of the overall performance and Fig 2 provides
individual plots for each tested resolution.

We have also evaluated different re-sampling resolutions on the InLoc [5] dataset in
Fig. 3. It can be seen that high-resolution images result in better relocalisation accuracy in
terms of the translation error.

Fig. 4 shows the heatmaps of predicted target point using input images of various reso-
lutions. The ground truth match is marked with a white dot. It can be seen that higher re-
sampling resolutions consistently reduce the uncertainty indicated by the size of the coloured
blob. However, as the resolution further increases over 3000, the prediction becomes over-
confident towards a close but inaccurate location. This is possibly because of the reduced
receptive field of the feature backbone relative to the original image.

In addition to evaluating the re-sampling impact for inference, we also trained our cor-
respondence network using various training image resolutions. Surprisingly, increasing the
input resolution during training does not improve performance, as shown in Fig. 5. We
hypothesise this is because various training image resolutions contain a fixed amount of
information that a correspondence network can use. Therefore, we choose to use 400 px
resolution during training in order to achieve a fair comparison with other baseline meth-
ods. Please note that all methods are trained with a batch size of 16 to accommodate higher
resolution in the feature maps.

2  Qualitative Analysis — HPatches

In Fig. 6 and 7, we select six individual testing pairs to demonstrate that XRCNet outper-
forms DualRCNet [2] and SparseNC [3] respectively in terms of the ratio of correct matching


Citation
Citation
{Balntas, Lenc, Vedaldi, and Mikolajczyk} 2017

Citation
Citation
{Li, Han, Li, and Prisacariu} 2020

Citation
Citation
{Taira, Okutomi, Sattler, Cimpoi, Pollefeys, Sivic, Pajdla, and Torii} 2018

Citation
Citation
{Li, Han, Li, and Prisacariu} 2020

Citation
Citation
{Rocco, Arandjelovi{¢}, and Sivic} 2020


TINCHEYV ET AL.: XRCNET - SUPPLEMENTARY 3

predictions of top 2000 outputs . It can be seen that XRCNet is capable of producing more
reliable results than previous works. In this section we propose a novel evaluation criterion
in supplement to the main results along with the qualitative comparison of Fig. 6. This new
evaluation criterion can be formulated as:

N
N(z3t57 ) =Y 1 > thney <17), (1)
1
where cl.Jr and ¢;” is the ratio of the correct matches out of all the predicted matches of two
comparing methods denoted as " and >~ respectively. 7" and T~ are thresholds of the
corresponding ratio. i € {1,2,...,N} is the index of the testing pairs in the dataset. 1(-) is
a binary indicator function such that 1(True) = 1 and 1(False) = 0. As long as there exists
the pixel-wise ground truth label, we can always adopt Equation 1 to calculate the number
of pairs that favour the **’ method against the >~ method.

Equation 1 measures the number of testing image pairs that favours method ™ with re-
spect to ratio T~ at a specific positive T7. In other words, N(-) is a histogram of the testing
pairs where the first method " achieves accuracy higher than the threshold 77 but the second
method ~ achieves accuracy lower than 7~ . In the top row of Fig 8, we illustrate plotting both
the N(77; 7+, XRCNet, DualRCNet) the blue curve vs N(77; 7+, DualRCNet, XRCNet) the
red curve over the range of T~ € [0, Tﬂ with a step size of 0.1, and 77 is set to 0.75, 0.85 and
0.95, respectively. Similarly, in the bottom row of Fig. 8 we present both N(77; 7%, XRCNet, Spai
as the blue curve vs N(77; 7", SparseNC, XRCNet) as the red curve. The three sub-figures
in Fig. 8 compare the number of testing data that favours XRCNet against those favouring
DualRCNet/SparseNC. It demonstrates that the proposed XRCNet consistently outperforms
DualRCNet and SparseNC for all combination of 7~ and 77 values as the number favouring
XRCNet is significantly higher than the number favouring DualRCNet/SparseNC.

3 Qualitative Analysis — InLLoc and Aachen Day-Night

Fig. 9 illustrates the performance of XRCNet on the InLoc dataset. Similarly to HPatches,
the increase in resolution from 1600 to 3840 (4K) results in better performance. The 4K up-
sampling resolution for InLoc dataset performs better in terms of relocalisation accuracy than
the rest. As mentioned in the main article, we hypothesise this due to the native resolution
of testing images in InLoc is much higher than that of HPatches.

Fig. 10 shows visual examples of the proposed model evaluated on the Aachen Day-
Night dataset [4].

4 3D Reconstruction Using Dense Correspondences

To demonstrate a potential application of using the correspondence network, we plot the 3D
point cloud reconstructed using the XRCNet in Fig. 11 on the Aachen Day-Night reference
images. We also compare the quality of the 3D reconstruction using XRCNet and DualRC-
Net in Fig. 12. It can be seen that the quality of the reconstructed models are fairly close for
the two methods.

12000 is a arbitrary number. Following previous works of D2Net, DualRCNet and SparseNC, we also adopt
2000 for a fair comparison.
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5 Code

We include code as part of the supplementary material to allow for reproducibility of the
results as well as retraining the models. We believe it is crucial to open-source this project
to encourage comparison and facilitate future research along this direction.
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Figure 1: Visualisation of the feature maps and correlation maps of key components in
XRCNet.



6 TINCHEV ET AL.: XRCNET - SUPPLEMENTARY

Viewpoint 10 Overall

MMA
MMA
MMA

0.2
0.0 ! 0.0
2 3 4 5 6 2 3 4 5
threshold [px] threshold [px] threshold [px]
= XRCNet 720 (Area: 2.85) ~—*~ XRCNet 1800 (Area: 4.05) —* XRCNet 2400 (Area: 3.93) XRCNet 3200 (Area: 4.03)
—*— XRCNet 1280 (Area: 3.52) —*~ XRCNet 1920 (Area: 3.91) XRCNet 2600 (Area: 4.02) —*~ XRCNet 3400 (Area: 4.04)
XRCNet 1400 (Area: 3.75) ~*~ XRCNet 2000 (Area: 3.73) —*~ XRCNet 2800 (Area: 3.96) XRCNet 3600 (Area: 3.95)
7 XRCNet 1600 (Area: 3.83) ~ XRCNet 2200 (Area: 4.04) XRCNet 3000 (Area: 4.07) —*— XRCNet 3840 (Area: 3.95)

Figure 2: Comparison of XRCNet with respect to the up-sampled input image resolution
evaluated on the HPatches dataset.
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Figure 3: Comparison of XRCNet with respect to the up-sampled input image resolution on
the InLoc dataset after geometric verification.
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Figure 4: Produced keypoint heatmap from the correlation tensor overlayed at a reference

image. The ground truth location of the query keypoint is denoted in white.
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Figure 5: Training XRCNet with re-sampled image resolution of 400px to 1,000 px at every

200px.
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DualRCNet XRCNet DualRCNet XRCNet

Figure 6: Qualitative comparison between XRCNet and DualRCNet on HPatches. The green
dots represent the correct matches whose errors are within 3 pixels, and red dots the incor-
rect matches. XRCNet produces more correct matches out of the top 2000 matches than
DualRCNet.
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Figure 7: Qualitative comparison between XRCNet and SparseNC on HPatches. The green
dots represent the correct matches whose errors are within 3 pixels, and red dots the incor-
rect matches. XRCNet produces more correct matches out of the top 2000 matches than
SparseNC.
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Figure 8: Top row: The comparison of the number of testing pairs that XRCNet outperforms
DualRCNet (blue curve) and DualRCNet outperforms XRCNet using Equation 1. Bottom
row: Similar comparison between XRCNet and SparseNC. For all comparisons, the T is
chosen as 75%, 85%, and 95% for both curves. 7~ in Equation 1 is denoted as the Negative
Threshold. *Pos’ denotes "+’ method and 0.75 represent the T ratio threshold.

Figure 9: Examples of XRCNet running on the InLoc dataset. To simplify the rendering, we
choose top 100 matches before the geometric verification to demonstrate the quality of the
matches.
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Figure 10: Examples of XRCNet running on the Aachen Day-Night dataset - top 2000
matches are displayed. It is worth pointing out the output matches with high reliability
scores are heavily clustered in relatively small regions and may overlap each other.

Figure 11: 3D model reconstructed using correspondences obtained by XRCNet for the
Aachen Day-Night dataset.
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Figure 12: Qualitative comparison of XRCNet (top) and DualRCNet (bottom) 3D model
reconstructions on the Aachen Day-Night dataset.
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