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A Supplementary material
Supplementary material is presented here as follows, first Section A.1 provides more exten-
sive results showing that the histogram evaluation method successfully captures and shows
the various statistical modalities related to the various pairings in the dataset. Section A.2,
provides a further analysis on the conditionality of cGAN and the proposed method via care-
fully selected boundary cases which show the failure of the classic discriminator to learn
conditionality. Section A.3 provides an additional evaluation of mode collapse for the depth
prediction model. Section A.4 looks into the choice of weighting the different parts of the
proposed loss function. Details are provided for reproducibility in Section A.5. Finally,
an analysis of the training procedure is provided in Section A.6 to show that the training
procedures did not encounter any degenerate situations.

A.1 Histogram evaluation criteria
The discriminator encodes the high dimensional space of input pairs into a lower dimensional
latent space. Visualizing the empirical distribution on a high dimensional space is infeasible,
however, since the encoded latent space learnt by the discriminator is compact, it is possible
to visualize the empirical distribution by observing the latent space. This provides a direct
insight into the discriminator performance and insight into the errors fed back for training
the generator. For the purpose of this paper, a histogram is plotted in order to demonstrate
the capacity of the discriminator to correctly classify underlying data distributions (see Fig-
ure A.1) as an example. A good cGAN discriminator should classify real-conditional as
true, and all the three remaining pairs as fake even if the variables of the pairs are sampled
from real data distribution (the case of a contrario real). Further analysis and results are
provided to show the performance of the evaluation using the proposed histogram approach.
As a reminder, 4 sets of data pairings are created as formalised in Section 2.1. The output
response of the discriminator for each of these pairings is then plotted as a histogram with a
different color. It can be noted that in the original GAN paper [14], the authors provide the
intuition behind the underlying probability distributions. With the histogram test approach
shown here, these distributions can be clearly observed.

The work presented in [14] showed that the optimal discriminator converges to:

D∗ =
p(y|x)

p(y|x)+ pg(y|x)
(8)

Therefore considering the GAN cost function in Eq 1 with the definition in Eq 3 the cost
function becomes:

V (G,D∗) = min
G
−log(4)+2D js(pg||p) (9)

p(x,y|x) is the real-conditional pair distribution while pg(x,y|x) is the generated-conditional
pair. Therefore, Eq 1 corresponds to minimizing Jensen Shannon divergence between the
probability distribution defined by the generator pg(x,y|x) and the real probability distribu-
tion p(x,y|x). Therefore, for an optimal discriminator, the optimal generator is defined when
pg(x,y|x) matches the real probability distribution p(x,y|x). If the optimal discriminator
fails to model conditionality, the generator may not be able to match the real probability dis-
tribution p(x,y|x). That is why GAN models for semantic image synthesis suffer from poor
image quality when trained with only adversarial supervision [48] and consider additional
loss terms such as perceptual loss [23], L1[22] or feature-matching [45]. The segmentation-
based discriminator proposed in [48] can be considered as a strong conditional discriminator
by construction. The purpose of that paper was not explicitly enforcing conditionality, how-
ever, following the results presented in this paper, it could be concluded that they reach the
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state of the art by their task specific error term which induces strong conditionality on the
discriminator.

Figure A.1 shows the histograms of label-to-image and monocular depth prediction for
epochs 20, 100 and 200. Several observations can be made:

• For the two tasks and for all evaluated epochs, the a contrario cGAN optimal discrim-
inator correctly classifies each data pairing. The classical cGAN optimal discriminator
fails by classifying real-a-contrario as true (greater than zero).

• For a contrario cGAN, during training, the conditional-generated samples are shifting
towards towards the positive side of the function while training through the various
epochs. This shows that the generator is correctly learning to minimize the divergence
between the generated-conditional and real-conditional sets of data.

• Unlike classification metrics like accuracy, this histogram analysis provides more in-
sight. For instance, even though the generated-conditional, generated-a-contrario and
real-a-contrario are being classified as fake, three distributions are clearly distinguish-
able. There are therefore three different modalities for fake classification. There is
only a single modality for the "true" classification which is clearly for real-conditional
in yellow. The column showing the baseline optimal discriminator can be observed
to model real-conditional and real-a-contrario with approximately the same distribu-
tion (i.e. only 1 mode is visible for both of these pairings). This indicates that the
discriminator is invariant to the conditionality.

A.2 Conditionality analysis
In addition to Figure 1 in the paper, Figure A.2 is provided here to show various failure cases
for the classic cGAN approach. The test was carried out on the Cityscapes dataset label-to-
image trained as mentioned in Section 3. The histogram is plotted on the 500 Cityscapes
where y∼ p(y|x) . The experiment was performed using the optimal discriminator for both
models.

Extreme cases are chosen to assess the PatchGAN discriminator. Providing an "all-road",
"all-car", "no-object" label for each pixel paired along the set of real images as an input
pair. It can be seen clearly that PatchGAN discriminator classifies these pairs as "true".
The a contrario cGAN successfully classifies these pairs as "fake". This suggests that the
PatchGAN focuses only on y instead of looking at the pair (x,y).

Most PatchGAN-based methods do not pay careful attention to data pairing when train-
ing the discriminator, and subsequently the same conditional input image is reused for both
real and generated input pairs in each mini-batch. More precisely, the conditional variable x
is always the same in each condional pairing and only y changes (y∼ p(y|x) or y∼ pg(y|x)).
Subsequently the discriminator network learns to ignore the conditional input and the pre-
dicted true/fake label is only determined from the variable y. During experimentation we
tried to resolve this issue by not allowing the same x to appear in both generated and real
input pairings within a mini-batch. This test yielded the same results which suggest that
ignoring the conditional variable is a fundamental problem of the classic PatchGan archi-
tecture. As mentioned earlier, other architecture were also tested for conditionality and the
result was the same. This suggest that that the problem is not specific to PatchGAN but
generalises to cGAN architectures.

A.3 Mode collapse analysis
Mode collapse is the setting in which the generator learns to map several different inputs to
the same output. A collapsing model is by construction unconditional. Only a few measures
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Figure A.1: Yellow and Blue are the classic data pairings being that of real-conditional
and generated-conditional respectively. The proposed a contrario data pairings are Red
and Green for real-a-contrario and generated-a-contrario respectively. The last convolution
layer f (x,y) shows positive values for "true" and negative values for "false" since the Sig-
moid activation was used for training. The histogram evaluation is performed with dropout
and batch normalization during training. The top three rows show Cityscape label-to-image
histograms. The bottom three rows show the NYU Depth monocular depth prediction his-
tograms. The a contrario cGAN optimal discriminator correctly classifies each data pair-
ing while the PatchGAN optimal discriminator fails by classifying real-a-contrario as true
(greater than zero).
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Figure A.2: Extreme cases are provided to evaluate the two discriminators. The first row
represents the "all-road" label for all the 500 validation images. The second row represents
the "all-car" label. The third row represents the "no-object" label. It can be seen clearly
that the PatchGAN discriminator fails to classify these pairs as fake while a contrario cGAN
succeeds to classify them correctly.

have been designed to explicitly evaluate this issue [3, 44, 55]. MS-SSIM [55, 56] measures
a multi-scale structural similarity index and birthday paradox [3] concerns the probability
that, in a set of n randomly chosen outputs, some pair of them will be duplicates. Another
approach, NDB [44], presents a simple method to evaluate generative models based on rela-
tive proportions of samples that fall into predetermined bins.

The analysis provided in this section is an extension of the experiments done on depth
prediction. Figure A.3 shows the evolution of the NDB measure over training iterations using
the NDB score (the less, the better) for both pix2pix baseline and a contrario cGAN models
trained on the NYU Depth V2 training set [37]. Out of the 12 trained models, the best model
(in terms of RMSE log) is chosen for the evaluation. For clustering and evaluating NDB, non
overlapping patches of 64× 64 are considered. At the end of the training the NDB/k (k =
100) of the a contrario cGAN is 0.550 while the baseline achieves only 0.645. This indicates
that a contrario model generalizes better. This is also observed qualitatively in Figure A.8.
Training with the counter examples helps the discriminator to model conditionality. Thus,
the generator search space is restricted to only conditional space. The generator is penalized
for non-conditionality even if the generation is realistic.

A.4 Loss function analysis
An ablation study on Eq 6 was performed. Each term that contributes to the adversarial loss
is weighted by λi. Eq 6 becomes:

Ladv = min
G

max
D

[
λ1Ex∼p(x),y∼p(y|x)

[
log(D(x,y)]

]
+λ2Ex∼p(x)

[
log[1−D(x,G(x))]

]]
+

max
D

[
λ3Ex̃∼p(x̃),y∼p(y)

[
log(1−D(x̃,y))

]
+λ4Ex̃∼p(x̃),x∼p(x)

[
log(1−D(x̃,G(x)))

]]
(10)
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Figure A.3: An analysis of mode collapse using the NDB criteria (lower values are better)
throughout training on the NYU depthV2 dataset. It can be concluded from this evaluation
that the proposed approach is much better at avoiding mode collapse due to the restricted
search space of the generator.

Three strategies were considered for the weighting. The models were trained on the Cityscapes
label-to-image dataset with the same settings described earlier (Section 3.2). Figure A.4
shows the mIoU for different a contrario cGAN models trained with different choices for λi.

• Strategy 1: Equal contribution for each term : λ1 = λ2 = λ3 = λ4.

• Strategy 2: Balancing the "fake" and "true" contributions. Since there are 3 data
pairings classified as fake and only 1 real pair as true, equal balancing of true/fake
gives: λ1 = 1,λ2 = λ3 = λ4 = 0.33

• Strategy 3: Testing the significance of both a contrario error terms for fake and real
images. In this case only 3 terms with real-a-contrario is tested : λ1 = λ2 = λ3 =
0.5,λ4 = 0.

In this simple test, Strategy 1 gives the best results. Strategy 2 seems less stable. Strategy
3 succeeds to learn conditionality, however, it may not capture conditionality for generated
images during training. Each of these strategies succeed to model conditionality, however,
Strategy 1 converges faster and yields a better final result in terms of mIOU.

A.5 Reproducibility
Various experiments were performed using different datasets and input-output modalities.
Some extra detail is provided here for reproducibility purposes. In all the experiments using
the pix2pix baseline, random jitter was applied by resizing the 256× 256 input images to
286× 286 and then randomly cropping back to size 256× 256. All networks were trained
from scratch. Weights were initialized from a Gaussian distribution with mean 0 and standard
deviation 0.02. The Adam optimizer was used with a learning rate of 0.0002, and momentum
parameters β1 = 0.5, β2 = 0.999. A linear decay is applied starting from epoch 100, reaching
0 at epoch 200. Dropout is used during training. As in the original implementation [22], the
discriminator is a PatchGan with a receptive field of 70× 70. Similarly pix2pixHD [54],
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Figure A.4: The mIoU evaluation for different choice of λi. The strategy 1 of giving equal
contribution yield the best results. However, there is no major difference on the convergence
or the performances at epoch 200 between the different strategies

SPADE [41] and CC-FPSE [33] were trained with the same hyper-parameters as mentioned
is their respective papers. For label-to-image, a U-Net256 with skip connections was used
for the generator. A U-Net with 9 ResNet blocks was used for depth prediction, the last
channel is 1 instead of 3 and the activation of the last convolution layer generator is Relu
instead of Tanh.

For the image-to-label task, a U-Net256 with skip connections was used for the generator
but the output channel size was chosen to be 19 instead of 3 for segmentation of 19 classes.
The activation of the last convolution layer of the generator was changed to a softmax to
predict class probability for segmentation purposes.

A.6 Training details
Figure A.5(a) shows the gradient of the classic and proposed a contrario cGANs trained
on Cityscapes [7] label-to-image with and without a contrario (see Section 3.2). The mean
absolute value of the gradient is reported in order to demonstrate the stability of the training.
Neither vanishing nor exploding gradient is observed for both models. Figure A.5(b) shows
the training loss of the optimal discriminator trained as described in Section 3.1 for both
models with the generator fixed at epoch 200. Both models converge rapidly to 0. Allowing
the discriminator to converge for one epoch is enough to obtain the optimal discriminator
with a fixed generator.
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Figure A.5: (a) The mean absolute value of the gradients of the generator and discriminator
for both baseline and a contrario cGAN models trained on Cityscapes[7]. The gradient
is stable and it is neither vanishing nor exploding. (b) The loss function of the optimal
discriminators when the generator is fixed. Both losses converge rapidly to 0.
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Figure A.6: mIoU for the Cityscape image-to-label dataset throughout training. The pro-
posed method consistently obtains more accurate results and finishes with a largely different
score at the end of training 19.23 versus for the baseline 15.97.
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Figure A.7: Qualitative results of Cityscape image-to-label task. It can be seen that the
baseline model hallucinates objects. For instance, in the second row, the baseline hallucinates
cars while the a contrario cGAN segments the scene better. In the first row, the baseline
wrongly classifies the pedestrian as a car. While training the model, the discriminator does
not penalize the generator for these miss-classifications
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a contrario 
pix2pix

Figure A.8: Qualitative results for depth prediction. The a contrario cGAN shows better
performance and more consistent prediction with respect to the input. The first row shows a
case of mode collapse for the baseline as it ignores completely the input.
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a contrario 
pix2pix

Figure A.9: Qualitative results of Cityscapes label-to-image synthesis. In line with the quan-
titative results reported in Section 3.2, the qualitative results show better results for the a con-
trario in comparison to the baseline.
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Figure A.10: Qualitative comparison between different state-of-the-art methods for label-to-
image trained and tested on Cityscapes[7] dataset. As observed, CC-FPSE baseline is the
best baseline among classic cGAN. The a contrario improves all the baseline and the best
model among the 6 models is a contrario CC-FPSE


