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This supplementary material is organized as follows: In Section 1, we present the
architectural details of our completion network. In Section 2, we present additional qualita-
tive comparison results on CelebA-HQ [3] and Paris StreetView [2], as well as quantitative
comparison results on Paris StreetView.

1 Network Architecture
This section provides architectural details of our two-stage image completion network. It
consists of three components: Coarse Network, Refinement Network and Discriminator.
Their architectures are shown in Table 1, 2 and 3, respectively.

For column MODULE, "GConv" means gated convolution, which contains two convo-
lutions for calculating intermediate output and soft mask, and they share the same setting.
"GDeconv" consists of a 2× nearest neighbor upsampling followed with a gated convolution.
"Conv" indicates a convolutional layer and "FC" means a fully connected layer. All gated
convolution are followed by batch normalization in our experiment, but this is not the case
for convolutional layer and full connected layer. The proposed Adaptive multi-Temperature
Mask-guided Attention module is shown in Table 2 with "ATMA".

For the other columns, KERNEL and DILATION lists specified kernel size and stride used
in convolution, respectively. DILATION indicates dilation rate of convolution. NONLINEAR-
ITY represents type of non-linear activation function.

2 Additional Experimental Results
In Figures 1 and 2, we illustrate more examples on CelebA-HQ and Paris StreetView dataset.
256× 256 images degraded by 128× 128 squared central masks are used as input. Table 4
shows our quantitative comparison results in terms of mean l1 loss, mean l2 loss, peak signal-
to-noise ratio (PSNR) and structural similarity index measure (SSIM) on the validation set
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Table 1: Architecture of the Coarse Network (Stage 1)
MODULE KERNEL STRIDE DILATION NONLINEARITY OUTPUT SHAPE

Concat — — — — 256×256×4
GConv1 5 1 1 LeakyReLU(0.2) 256×256×32
GConv2 3 2 1 LeakyReLU(0.2) 128×128×64
GConv3 3 1 1 LeakyReLU(0.2) 128×128×64
GConv4 3 2 1 LeakyReLU(0.2) 64×64×128
GConv5 3 1 1 LeakyReLU(0.2) 64×64×128
GConv6 3 1 1 LeakyReLU(0.2) 64×64×128
GConv7 3 1 2 LeakyReLU(0.2) 64×64×128
GConv8 3 1 4 LeakyReLU(0.2) 64×64×128
GConv9 3 1 8 LeakyReLU(0.2) 64×64×128
GConv10 3 1 16 LeakyReLU(0.2) 64×64×128
GConv11 3 1 1 LeakyReLU(0.2) 64×64×128
GConv12 3 1 1 LeakyReLU(0.2) 64×64×128
GDeconv13 3 1 1 LeakyReLU(0.2) 128×128×64
GConv14 3 1 1 LeakyReLU(0.2) 128×128×64
GDeconv15 3 1 1 LeakyReLU(0.2) 256×256×32
GConv16 3 1 1 LeakyReLU(0.2) 256×256×16
Conv17 3 1 1 Tanh 256×256×3

Table 2: Architecture of the Refinement Network (Stage 2)
NETWORK MODULE KERNEL STRIDE DILATION NONLINEARITY OUTPUT SHAPE
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Concat — — — — 256×256×4
GConv1 5 1 1 LeakyReLU(0.2) 256×256×32
GConv2 3 2 1 LeakyReLU(0.2) 128×128×64
GConv3 3 1 1 LeakyReLU(0.2) 128×128×64
GConv4 3 2 1 LeakyReLU(0.2) 64×64×128
GConv5 3 1 1 LeakyReLU(0.2) 64×64×128
GConv6 3 1 1 LeakyReLU(0.2) 64×64×128
GConv7 3 1 2 LeakyReLU(0.2) 64×64×128
GConv8 3 1 4 LeakyReLU(0.2) 64×64×128
GConv9 3 1 8 LeakyReLU(0.2) 64×64×128
GConv10 3 1 16 LeakyReLU(0.2) 64×64×128
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Concat — — — — 256×256×4
GConv1 5 1 1 LeakyReLU(0.2) 256×256×32
GConv2 3 2 1 LeakyReLU(0.2) 128×128×64
GConv3 3 1 1 LeakyReLU(0.2) 128×128×64
GConv4 3 2 1 LeakyReLU(0.2) 64×64×128
GConv5 3 1 1 LeakyReLU(0.2) 64×64×128
GConv6 3 1 1 LeakyReLU(0.2) 64×64×128
ATMA — — — — 64×64×128
GConv7 3 1 1 LeakyReLU(0.2) 64×64×128
GConv8 3 1 1 LeakyReLU(0.2) 64×64×128
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Concat — — — — 64×64×256
GConv11 3 1 1 LeakyReLU(0.2) 64×64×128
GConv12 3 1 1 LeakyReLU(0.2) 64×64×128
GDeconv13 3 1 1 LeakyReLU(0.2) 128×128×64
GConv14 3 1 1 LeakyReLU(0.2) 128×128×64
GDeconv15 3 1 1 LeakyReLU(0.2) 256×256×32
GConv16 3 1 1 LeakyReLU(0.2) 256×256×16
Conv17 3 1 1 Tanh 256×256×3

Table 3: Architecture of the Globally-and-Locally Consistent Discriminator
NETWORK MODULE KERNEL STRIDE DILATION NONLINEARITY OUTPUT SHAPE

G
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O
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A
L

Conv1 5 2 1 LeakyReLU(0.01) 128×128×64
Conv2 5 2 1 LeakyReLU(0.01) 64×64×128
Conv3 5 2 1 LeakyReLU(0.01) 32×32×256
Conv4 5 2 1 LeakyReLU(0.01) 16×16×512
Conv5 5 2 1 LeakyReLU(0.01) 8×8×512
Conv6 5 2 1 LeakyReLU(0.01) 4×4×512
FC1 — — — LeakyReLU(0.01) 1024

L
O

C
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L

Conv1 5 2 1 LeakyReLU(0.01) 64×64×128
Conv2 5 2 1 LeakyReLU(0.01) 32×32×256
Conv3 5 2 1 LeakyReLU(0.01) 16×16×512
Conv4 5 2 1 LeakyReLU(0.01) 8×8×512
Conv5 5 2 1 LeakyReLU(0.01) 4×4×512
FC2 — — — LeakyReLU(0.01) 1024

L
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E
A

R Concat — — — — 2048

FC3 — — — — 1

of Paris StreetView. It shows that our completion network outperforms the other approaches.
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Ground Truth Input PatchMatch ParConv DeepFillv2 OursPENNETDeepFillv1

Figure 1: Qualitative comparisons on CelebA-HQ dataset. From left to right, ground truth,
input image with hole, PatchMatch [1], DeepFillv1 [6], ParConv [4], PENNET [8], Deep-
Fillv2 [7] and Ours.
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Ground Truth Input PatchMatch ParConv DeepFillv2 OursMEDFE

Figure 2: Qualitative comparisons on Paris StreetView dataset. From left to right, ground
truth, input image with hole, PatchMatch [1], ParConv [4], DeepFillv2 [7], MEDFE [5] and
Ours.
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Table 4: Results of mean l1, mean l2, PSNR and SSIM on validation set on Paris StreetView.

mean l1 ↓ mean l2 ↓ PSNR (dB) ↑ SSIM ↑
PatchMatch 2.53 % 0.62% 23.7 85.1 %
ParConv 2.63 % 0.59% 23.6 84.3 %
DeepFillv2 2.40 % 0.51% 24.3 85.3 %
MEDFE 2.58 % 0.56% 23.9 85.2 %
ours (K = 2) 2.14 % 0.49 % 25.0 86.7 %
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