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The supplementary material provides more quantitative and visual results on the MvTec
Anomaly Detection (M VTec AD) [1], Shanghai Tech Campus (STC) [5] and CIFAR-10 [4].

1 MVTec Anomaly Detection Dataset

For each category (except toothbrush with only one defect type), two different defect types
are shown in Figure 3, Figure 4, Figure 5 and Figure 6. It demonstrates that our method
enables anomaly detection of any size and any type.

2 Shanghai Tech Campus Dataset

SSIM-AE [,-AE CAVGA-R, SPADE Ours
0.76 0.74 0.85 0.899 0913

Table 1: Pixel-level anomaly detection on the STC dataset. The performance is measured by
the average AUC-ROC across 12 scenes. The results for all the counterpart approaches are
quoted from [3].

We further evaluate our method for pixel-level anomaly detection on the STC dataset.
This dataset is originally created for anomaly detection in 12 surveillance scenes. Follow-
ing [6], we construct the training and test sets by extracting every fifth frame from each
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scene. The training set only contains normal images while the test set contains both normal
and anomalous images. Different from the MVTec AD dataset, STC focuses more on motion
anomalies such as fighting and car intruding captured by surveillance cameras.

Table 1 shows that the performance of our method exceeds that of CAVGA-R, [6] by a
significant margin. Note that CAVGA-R,, reports the state-of-the-art result in the literature
on unsupervised anomaly detection. Once again, our method outperforms SPADE in spite
of a lightweight network used.

Figure 1 visualizes the results of our method on three anomalous images from the STC
dataset. We clearly find that the anomalous regions in the images are very difficult to pre-
cisely localize if we only use a specific level of features. Combination of the features in a
hierarchical fashion shows a good way to delineate the anomalous regions regardless of their
sizes.

3 CIFAR-10

OCGAN 1-NN OC-SVM ©L-AE VAE STAD Ours
0.657 0.819 0.739 0.790 0.750 0.820 0.832

Table 2: Image-level anomaly detection on CIFAR-10. The performance is measured by the
average AUC-ROC across 10 categories. The results for all the counterpart approaches are
quoted from [2].
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Figure 1: Visual results of our method on three anomalous images from the STC dataset.
ResNet-18 is used as the backbone and the three bottom blocks (i.e., conv2_x, conv3_x,
conv4_x) are selected as feature extractors. Columns from left to right correspond to input
images, ground truth regions, anomaly maps of the three blocks, and the combined anomaly
maps respectively.

Finally, we test whether our method generalizes well on small-sized images. We conduct
experiments on CIFAR-10 which is traditionally used for image-level one-class classifica-
tion. For this dataset, the sizes of feature maps from three blocks are 8 x 8,4 x 4, and 2 x 2
respectively. The hyper-parameter settings are the same as those used in the MVTec AD
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Figure 2: Results of our method on the CIFAR-10 dataset. ResNet-18 is used as the back-
bone and the three bottom blocks (i.e., conv2_x, conv3_x, conv4_x) are selected as feature
extractors.
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experiment. Following [2], we take one class as normal and the remaining nine classes as
anomalous in turn, totally resulting in ten runs. We see clearly from Table 2 that our perfor-
mance is much better. For each category, we rank the test images according to their anomaly
scores. The top five samples and the bottom five sample for five categories are given in
Figure 2. It is clear that our method predicts the images belonging to the given category as
normal and the ones from the other categories are correctly classified as anomalies.
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Figure 3: More visual results of our method on some example images from the MVTec AD
dataset. Higher confidence in anomalous pixels are displayed in redder color. Zoomed in for
better display.
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Figure 4: More visual results of our method on some example images from the MVTec AD
dataset. Higher confidence in anomalous pixels are displayed in redder color. Zoomed in for
better display.
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Figure 5: More visual results of our method on some example images from the MVTec AD

dataset. Higher confidence in anomalous pixels are displayed in redder color. Zoomed in for
better display.
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Figure 6: More visual results of our method on some example images from the MVTec AD
dataset. Higher confidence in anomalous pixels are displayed in redder color. Zoomed in for
better display.
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