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1 De-Identification Methods

We compare our result with three publicly available and widely-established methods for de-
identification of MRI head scans, depicted in Figure 3 in the main text. All methods have
in common that they (/) are not deep-learning-driven, (2) require no additional training and
(3), are used on a day-to-day basis by clinical- and neuroscientists. All procedures were
applied with default settings on images of resolution 128 x 128 x 128 with model-agnostic
preprocessing as described in Section A.3.

QUICKSHEAR [17] computes a plane to divide a given MRI into two parts: one containing
facial structures, and the other containing the remainder of the scan. Voxels in the first part
are set to zero.

FACEMASK [13] uses a filtering method to blur the facial features. Based on registration to
an atlas, the face region is identified, normalized and filtered. The result is transformed back
to the original image space.

DEFACE [2] estimates the probabilities of voxels belonging to the face based on an atlas of
healthy control subjects. Intensities of voxels whose probabilities are small enough are set
to zero.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
© 2021. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.
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2 Benchmark Datasets

In this work, we consider two standard publicly available and large-scale medical imaging
datasets which feature T1-weighted volumetric MR images of the skull for each subject.
Scanner types and acquisition protocols differ between and within the datasets.

0AsIS-3 [12] contains MRI and PET scans of 1,098 patients gathered from multiple longi-
tudinal studies. The total number of negative subjects is 605, i.e. patients without any signs
of mental diseases, and the positive subjects 493 exhibit Alzheimer’s disease (AD). In total,
each of the 2,168 different MRI sessions comes with a varying modalities recorded using
four different Siemens devices (BioGraph mMR PET-MR 3T, TIM Trio 3T, Sonata 1.5T,
Vision 1.5T).

ADNI [25] is a large-scale dataset that comprises MRI scans of healthy, mildly cognitively
impaired and AD patients recorded by six different scanners from GE (25X, Widebore 25X),
Philips (R3, R5) and Siemens (20VB17, Prisma D13, Skyra E11, VE11C). For the sake of
reproducibility, we choose the standardized variant [27] with 2,172 3T MRI scans over a
time span of three years.

3 Model-agnostic Preprocessing

To ensure quality, comparable signal intensity distributions, and a consistent orientation of
the acquired MR images, we apply various preprocessing steps. We apply standard prepro-
cessing steps to ensure quality, comparable signal distributions, and consistent orientation
(e.g. [9, 16]) to positively affect algorithms. These preprocessing steps are applied prior to
all de-identification methods in our study.

Orientation Correction Images within MR datasets are often not consistently aligned which
ultimately hampers the learning process. Thus, we leverage FSL (FMRIB Software Li-
brary) [20] to re-orient all images to the radiological orientation convention, the so-called
LAS orientation.

Bias Field Correction The bias field is a low-frequency degradation of an MR scan due to
magnetic field inhomogeneities which is typically imperceptible to humans. If unaccounted
for, this degradation can induce different grayscale values on the same tissue type which, in
turn, might impair downstream algorithms [10]. We use the nonparametric N4BiasFieldCorrection
algorithm from the ANTs library [22].

Registration MR scans exhibit a high degree of variability primarily because of anatomical
reasons, but also because patients are typically not consistently positioned within the MRI
tube. We therefore apply a non-rigid, double-affine TRSAA registration offered by the ANTs
library to mitigate these effects. The necessary registration template is chosen uniformly at
random once for each dataset.

Region-of-Interest Segmentation The toolkit Robex (Robust Brain Extraction [6]) was used
to separate the brain from surrounding tissues. We have chosen this method as its segmen-
tations turned out to more robust than competing methods (e.g. [18]). On the flip side, this
increased accuracy comes at the expense of longer execution times.

White Stripe Normalization' Previous work (e. g. [19]) has emphasized the importance
of normalization for statistical evaluations. As no significant performance differences be-
tween intensity normalization schemes have been reported [15], we opt for the compara-

'Only done for our model as other algorithms expect no change in scaling
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tively simple white strip normalization that estimates both the mean u, and the (biased)
standard deviation o, over the image voxels x, ,,,, belonging to the brain tissue (as indicated
by bu,v,w(x) = bu,v,w):

o Zu,v,we{l ..... S} bu,v,w *Xuvw

My = :
Zu.v,we{lw.‘,S} bu,v,w
. va,we{l,...ﬁ} bu,v,w : (xu,v,w - I»lb)2
b =
Zu.v,we{l....,S} bu,v,w
Finally all voxel values are shifted and rescaled using the z-score transformation X = x—;:”’.

Observe that this transformation is invertible given that ones memorizes U, and op,.

4 Loss Function Considerations

We initially experimented with the relativistic average loss Ra-LS-GAN variant suggested
by [7]:

LESOAN R, _p, [(De) (xf) —Ex,~pyDo(xr) — 1)2] + By, Py [(D@)(Xr) —E,,~p,Dolxs)+1)*

LRSCAN R p [(D(a (xr) = Eyx,~p,Do(xf) — 1)2] +Ey Py [(D@) (xf) = EypyDo(xr) + 1)2]

[E—

where Py, Py denote the original resp. the fake distribution induced by G¢ and we drop the
conditioning variable y(x) from the notation. Observe, however, that this loss function is
incompatible with our conditional scenario as Ey,.py De(x) and Ey,p, De(xs) are com-
puted by averaging across scans associated to different conditional information. To solve
this problem, we make sure that every patient can occur at most once in a batch and get rid
of the aforementioned expectations:

L6 =E(y; x)~(py.py) [(Po(xf) = Do(xr) = 1)*] + By, x)m(pypy) [(Po(xr) = Dolxs) +1)°]
=2E(x, x)~(Px.,Py) [(De(xr) —De(xf) + 1)2]

Lp =B, 2 )m(py.py) [(Po(xr) = Dolxr) = 1)*] + E(y, )~y ) [(Do(xr) — Do (x7) +1)°]
= 2B (s, 1/ )~(Px.Py) (Do (xf) = Do(x) +1)°]

Observe that this identical to the construction of R-LS-GAN if we follow the principles
of [7].

5 Binary Downsampling

Owed to the progressive structure of CP-GAN it is necessary to downsample (i.e. halve their
resolution) successively until some minimium resolution is attained. We suggest a simple
means to downsample binary tensors that aims to preserve the sparsity degree of the input
tensors. Suppose that we have some given input mask mg € {0, 1}2nX2nX2n for some fixed

neN. Let (m)i=1, . ,—p € [0, 1)2"7>2>2" further denote the result of applying aver-

age pooling i times on mg and stopping at some minimal resolution 27 x 2P x2” p € N. A
new sequence (m') i=1,...n—p Of binary representations can then be constructed by interpreting
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each voxel value of m, as a Bernoulli parameter determined by a maximum likelihood esti-
mation over a (flattened) patch of 2/t1 . 2i+1. 21 — 23(+1) (binary) realizations stemming
from my. Accordingly, this interpretation permits us to view m} as a volume of Bernoulli
parameters from which we can derive m] by sampling in a voxel-wise fashion. Most im-
portantly, this construction preserves the non-zero {(mg) proportion of mg in expectation

Qe (%) Lppwm™™ =E [(2,}_[)3zw7w m'"“*™)| for i =1,...,n— p). Although this
downsampling scheme is stochastic in essence, we observe that the mapping becomes de-
terministic if a specific Bernoulli parameter is found by averaging over a region (patch) of
constant realizations. Consequently, voxels of m] corresponding to the cerebral cortex (“brain
boundary”) expose higher entropy than voxels from the interior of the brain. We conjecture
that this makes the proposed generator more robust as it cannot rely on not having to model

certain voxels.

Method Elapsed time per sample [sec.]
FACE MASK 91+£5
DEFACE 7143
CP-GAN 71+£3
QUICKSHEAR 28 +4

Table 1: Execution Time Measurement: Mean and standard deviations are aggregated over
200 runs on different scans.

6 Execution Time Measurement

As de-identification tools are meant to be applied within a clinical environment, it is impor-
tant for them not to be overly time-consuming. Therefore, we measure the elapsed time” that
each method takes. To put all methods on an equal footing, we decide to start measuring
the time just before the NifTi-1° image is loaded and stop measuring once the de-identified
NifTi-1 scan was generated. Moreover, we decide to omit the time that was spent in Model-
Agnostic Preprocessing since it is the same for all methods. All methods are single-threaded
and we only execute one process at a time. The benchmark system is given by a Intel(R)
Xeon(R) Silver 4216 CPU @ 2.10GHz, 252 GiB of RAM and 1 Quadro RTX 6000 GPU (24
GiB main memory). All methods are executed exactly 200 times.

In Table 1 we observe that CP-GAN’s execution time is in line with the other de-identification
methods. It ranks second, however QUICKSHEAR is more than two times faster than CP-GAN
and DEFACE, with FACE MASK taking the most time per sample. It is worthwhile to mention
that both QUICKSHEAR and CP-GAN leverage the Robex [6] algorithm to compute a brain mask,
which, when run in isolation, already takes 27 seconds per sample on average. This insight
provides motivation to speed up either method by supplanting Robex with a faster algorithm
if time constraints are a priority.

2Wall clock time
3NifTi-1 is a widely-established format for MR imagery, used to ship OASIS-3 & ADNI
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7 Hyperparameters

The table below provides a list of the hyperparameter values used in the experiments appear-
ing in the main text.

Hyperparameter Value
Batch size 2
Number of steps (0ASIS-3, ADNI) 35,000
Min. generated resolution s 4
Max. generated resolution S 128
Number of blocks Np 6
Kernel size k 5
Leaky ReL.U steepness 0.2

8 Potentially vulnerable properties

We noticed a gap between CP-GAN’s performance and the theoretical optimal in the de-
identification experiments above. It is our conjecture that this gap may be explained by
certain properties common to all the de-identification methods considered in this work. In
general, the size and shape of a patient’s head, if known to an attacker, may be exploited
to eliminate a large portion of candidates and narrow the search. By design, the shape of
a head synthesized by CP-GAN is only determined up to the convex hull, ruling out exact
(privacy-compromising) reconstructions. Yet, we hypothesize that CP-GAN preserves the size
of the head, as the discriminator would have deemed inconsistently-sized heads as being
unrealistic.

To test this, we apply a simple resizing scheme to the privacy transformed representa-
tion to observe the effect on the synthesized volume (if it indeed scales with the conditional
volumes and generates realistic features). The scaling limits (Qyin, Omax) Were chosen to
reflect the distribution of brain sizes present in the data. We are interested in showing that
the GAN is able to realistically synthesize volumes in approximately the same conditions
that it has seen during training. We identify the 5% and 95% quantiles of the brain mask vol-
umes, 7Ns resp. Mos. From this, we set limits Gy = M5/150 ~ 0.88 and  Otmax = Mos/nso == 1.1.
Thus, (Omin, Cmax) reflect the extremes of head size appearing in the training data. Re-
call that the privacy transform y(x) contains the brain mask, brain data, and convex hull
[b(x),x0b(x),c(x)] and serves as the conditioning variable for cr-GaN. We scale these vol-
umes according to @ € R by resizing from resolution S3 to | S|3, then use a linear spline
interpolation to infer intensities at integral positions (where |-| denotes the floor function).
The resulting volume is either center cropped or evenly padded, yielding a convex hull, brain
mask, and brain scaled by « within a volume of resolution S as shown in the top three rows
of Figure 1. As in all other experiments, we pick a resolution of § = 128.

The bottom row of Figure 1 contains the output of cr-GaN, which manages to account for
variations in size of the conditioning information without any visible degradation of quality.
In principal, this means CP-GAN shares the same potential size (but not shape) vulnerabilities
as the other de-identification methods. We believe that these properties are not specific
enough to represent a fundamental compromise to patient privacy. Nevertheless, future work
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USER-BASED MODEL-BASED

OASIS-3 ADNI  OASIS-3  ADNI

ORIGINAL sefesiesk sfekolok skskoskosk sfesfesfesk
BLURRED sofkk kol kR skekokok

T FACEMASK ok ek sk R
DEFACE skekoksk skskokok sfkokor sfeskoskok
QUICKSHEAR skeokeskek skeskskok sfeskoskeok skeskoskok
BLACK ok ns RS PEEES
MRI WATERSHED ns ns Ak kokolok

Table 2: Analysis of statistical significance (de-identification quality): We perform the
Wilcoxon test between CP-GAN and all other methods. We observe that that the superior
performance of CP-GAN is generally statistically significant with respect to the competing
methods FACE MASK, DEFACE and QUICKSHEAR. Interestingly, we find that the user-based de-
identification performance of CP-GAN is statistically insignificant as compared to the (hard)
control tasks BLACK and MRI WATERSHED, indicating that users find CP-GAN to be similarly dif-
ficult. The same does not apply to the model-based scenario in which the Siamese network
proves to be more consistent across the aforementioned methods.

Sgrensen-Dice coefficient T Intersection-over-Union (IoU) T
OASIS-3 ADNI OASIS-3 ADNI
BRAIN VCSF WHITE GREY BRAIN VCSF WHITE GREY BRAIN VCSF WHITE GREY BRAIN VCSF WHITE GREY
FACE MASK Hkak kR eRRE ekek ns ns ok D sokk ok ns ns ok ok

DEFACE
QUICKSHEAR ekt Hpk RS RS EEE S sk sk sk EETy ek st st

MRIWATERSHED ~ *#%% sHopk RS RS EEEEY EEEEY skt skt stk skt EEEEY EEEEY sopk EEEEY stk sttt

Table 3: Analysis of statistical significance (brain segmentation): We perform the (paired)
Wilcoxon test between CP-GAN and all other methods. We observe that the superior perfor-
mance of CP-GAN is generally found to be statistically significant with the exception of FACE
mask on the BRAIN and VCSF regions (ADNI).

may consider avenues to address this, for example, by randomly resizing the de-identified
scan.

9 Statistical significance of experimental results

In addition to the identification rate of each model, we also report in Table 2 whether the
results of competing methods are statistically significant when compared to CP-GAN. We per-
form a Wilcoxon [26] test assuming that the null hypothesis is equality of all model-specific
identification rates. A Wilcoxon test is similar to a paired Student’s t-test but does not assume
that the difference of identification rates between any two models is necessarily normally dis-
tributed. We use Bonferroni’s correction [3] to compensate for effects that could lead to a
overestimation of statistical significance in a multi-comparison scenario [1].

In the same manner, we also perform a Wilcoxon test for our brain segmentation exper-
iment (Table 3). We find that cP-GAN’s Sgrensen-Dice coefficient and its Intersection-over-
Union w.r.t. original segmentations are significantly different from those of other methods —
with the exception of FACE MASK on the modalities VCSF and BRAIN.
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(a) OASIS-3 (b) ADNI
0.85 0.9 0.95 1 1.05 1.1 1.15 0.85 0.9 0.95 1 1.05 1.1 1.15

POOBOBB 060086

OOOOOOOOOOGOUU
0000000 0000000

Figure 1: Potentially vulnerable properties: We demonstrate why CcP-GAN does not achieve
perfect de-identification fidelity. It is because it synthesizes heads compatible to the size of
the conditional input information y(x), allowing users to perform a process of elimination
in which dis-proportioned heads can be eliminated. In the first three rows, we manipulate
Y(x), the privacy transform CP-GAN is conditioned on to reflect natural variations appearing
in the data (scale factor o € [0.85,1.15]). Given these inputs, CP-GAN produces realistic and
appropriately sized outputs shown in the bottom row.

Original 1 2 3 4 5

Figure 2: User study: We show the original rendering and 5 renderings of different patients
to AMT users. Their task is to defeat the de-identification method by selecting the ren-
dering matching the query. Here, OAsIS-3 patients are de-identified using CP-GAN. “5” is the
remodeled original.

10 De-identification quality user study

An exemplary question asked on Amazon Mechanical Turk can be found in Figure 2. A
worker is said to have correctly answered a question if the original rendering was correctly
associated to the de-identified rendering belonging to the same scan resp. person. The identi-
fication rate is defined as the percentage ratio of correctly identified pairings and total number
of questions. Guessing therefore results in a success rate of % =20%.

11 De-identification quality model-based study

We use a batch size equal to 8, the Adam optimizer [11] with a learning rate of 1073 (8 =
[0,1—1072]) and train the Siamese network for 20 epochs. Individual layers are made up of
Convolution — Dropout [21] — Swish [14] — Instance Norm [24] sub-layers. We have noticed
that the number of epochs does not seem to play a huge role, as we were unable to make out
any differences opting for 10, 15 or 25 epochs. The data is shuffled after each epoch.
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ORIGINAL BRAIN CP-GAN FACE MASK DEFACE QUICKSHEAR

Figure 3: Visualizing the regions altered by de-identification: We show the regions that have
been altered through de-identification by visualizing the absolute difference between de-
identified slices and original slices. We include BRAIN in column 2 to indicate the medically
relevant brain region that should nor be altered via de-identification. CP-GAN and all other
methods perfectly preserve the brain — we observe that the pixels corresponding to the brain
are zero (indicated by black color). Furthermore, we observe that CP-GAN is provides a more
comprehensive modification of the scan, as can be seen by the larger differences surrounding
the brain including regions around the skull as well as ocular, nasal, and oral cavities. By
design, regions where BRAIN is black can be modified by cp-GAN.

12 Visualizing de-identification changes

To visualize the regions that have been changed the various de-identification methods, we
provide absolute difference maps in Figure 3. We observe that cr-GAN de-identifies in a
much more global sense than the removal-based methods, modifying regions around the
whole skull as well as ocular, nasal, and oral cavities. In all cases, the clinically-relevant
brain region (shown in the 2 column) remains unaltered.

13 Deep learning-based age prediction

Machine learning algorithms can be trained to estimate brain age from MRI scans, and the
difference between predicted and chronological age is shown to have links to aging and brain
disease [8]. We investigate whether de-identification adversely affects brain age estimation.
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Mean |np —ng| [yr] |

OASIS-3 ADNI

ORIGINAL 0.000 0.000
FACE MASK 2.07 0.38
DEFACE 2.39 5.81
QUICKSHEAR 2.48 12.30
CP-GAN 2.38 1.80

MRIWATERSHED ~ 33.0  2.9-10°

Table 4: A network (trained on original imagery) predicts brain age on the original scan (n¢p)
and a de-identified scan (np) for each subject in the test set. We show the mean absolute
difference |np —np| in years, computed over 5 runs. Differences near 0 are better as they
indicate less adverse effects from de-identification.

We train a three-dimensional convolutional feed-forward network with an Li-loss function
to estimate brain age in MRI scans (ground truth: chronological age). We assess how the
network’s predicted age np on the de-identified scans compares to the predicted age on the
originals np by measuring the absolute difference |np — ng| between the two in years.

The results appear below in Appendix Table 4. We find that our model consistently
outperforms DEFACE and QUICKSHEAR, with notably little bias for both ADNI and 0AsIS-3. Not
surprisingly, FACE MASK shows the least bias, this can be explained with the fact that it only
blurs the face and therefore retains almost all of the age information. It is worth noting that
an uncertainty of 3-4 years is typical, as chronological age is a noisy label. The deviations
reported by the de-identification methods are in the range of similar age estimation studies [4,
5, 23], suggesting that the effect on age estimation is acceptable. The performance of CP-GAN
is surprisingly good considering that the model exploits age cues in regions outside of the
brain, suggesting CP-GAN may implicitly model age information from the brain it conditions
on.

We leveraged the Adam optimizer [11] with a learning rate of 10~3 whereas the batch
size was chosen to be 16. We trained the model for 20 epochs. More details can be found in
the supplied code base.

14 Proofs

Sparsity Preservation of Binary Downsampling. Assume that m € {0, 1}25%25%25 denotes
some arbitrary binary image. Let m’ € {0, 1}5%5*S the result of performing 2 x 2 x 2 average
pooling on m. We interpret each voxel value n  x as a parameter to a Bernoulli distribu-
tion estimated by averaging over 8 voxel Values from m allowing us to draw a sample from
each voxel. The sampled result, denoted by m”, is binary again and preserves the degree of
sparsity {(m) of m in expectation, i.e.:

E(m [532 ] 2532

i,j.k

Proof:
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For:
1 1 1
"
mijx~ B p= /8 Z Z Z M2itig 2+ jo,2k+ko
i0=0 jo=0ko=0

we obtain:
" 1 = "
{(m")=E B Z m;
i,j,k=0
S—1

1
=5 L Elmijl

- -5 1/8 Z Z Z M2itig,2j+jo.2k+ko

k=0 ip=0 jo=0ko=0
1 25—1

(25)? Z mi k= ¢ (m)

i,jk=0

where the last step follows from the observation that every element in m occurs exactly once
in the summation.
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Figure 4: Original MRI slices and those generated from cp-GAN (OASIS-3): Slices (of a single
patient) run from left to right and from top to bottom. Each box corresponds to one slice
index and contains the original on the left and the synthesized counterpart on the right.
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