
SOSNOVIK, MOSKALEV, SMEULDERS: DISCO 1

DISCO: accurate Discrete Scale
Convolutions
Supplementary Materials

Ivan Sosnovik
i.sosnovik@uva.nl

Artem Moskalev
a.moskalev@uva.nl

Arnold Smeulders
a.w.m.smeulders@uva.nl

UvA-Bosch Delta Lab
University of Amsterdam
Netherlands

1 Proofs

We have shown that scale-convolution is indeed scale-equivariant only if the kernel κ and its
up-scaled version κs−1 satisfy the following relation

Ls[f]?κ = Ls[f ?κs−1], ∀ f ,s (1)

where Ls is an operator of downscaling.

1.1 Solutions in 1D

Let us consider an operator of downscaling Ls, which is represented as a rectangular in-
terpolation matrix LLL of size Nout×Nin. A convolution with a kernel κ is represented as a
multiplication with a matrix KKK of size Nout×Nout, and with a kernel κs−1 written as a matrix
KKKs−1 of size Nin×Nin. The equivariance constraint with respect to κs−1 is written as follows:

KKKLLL = LLLKKKs−1 (2)

Lemma 1. Equation 2 has non-trivial solutions with respect to KKKs−1 only if L performs
downscaling by an integer factor.

Proof. Let us consider PPPin and PPPout, matrices of circular shift of rows of sizes Nin×Nin and
Nout×Nout correspondingly. With no loss of generality we assume circular boundary con-
ditions for convolutions. Thus, matrices KKK,KKKs−1 are circulant, and therefore KKK = PPPoutKKKPPPT

out
and KKKs−1 = PPPinKKKs−1PPPT

in [3]. If we substitute it into Equation 2 we have the following:

PPPi
outKKK(PPPT

out)
iLLL = LLLPPP j

inKKKs−1(PPPT
in)

j, ∀i, j ∈ Z (3)

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Loehr} 2014

2 SOSNOVIK, MOSKALEV, SMEULDERS: DISCO

If we multiply it from the left by (PPPT
out)

i and from the right by PPP j
in we get the following

equation:
KKK(PPPT

out)
iLLLPPP j

in = (PPPT
out)

iLLLPPP j
inKKKs−1 (4)

We can now multiply Equation 4 by a coefficient αi j and then the following holds true:

KKK
Nout

∑
i=1

Nin

∑
j=1

αi jQQQi j =
Nout

∑
i=1

Nin

∑
j=1

αi jQQQi jKKKs−1 ,∀αi j (5)

where QQQi j = (PPPT
out)

iLLLPPP j
in. Equation 5 holds true for all αi j. Which gives us the following

system of equations:

KKK(QQQ00−QQQNoutNin
) = (QQQ00−QQQNoutNin

)KKKs−1

KKK(QQQ01−QQQNout,Nin+1) = (QQQ01−QQQNout,Nin+1)KKKs−1

. . .

KKK(QQQ10−QQQNout+1,Nin
) = (QQQ10−QQQNout+1,Nin

)KKKs−1

. . .

(6)

Which has non-trivial solutions if the expressions in all brackets are equal to zero. Thus,
QQQ00 = QQQNoutNin

. In other words, LLL is a row-circulant matrix and Nin is divisible by Nout.
Therefore, the downscaling is performed by an integer factor Nin/Nout

In order to obtain the solution of Equation 2 we represent convolutional matrices by using
their eigendecompositions.

KKK = FFFoutdiag(FFFoutκκκ)FFF∗out

KKKs−1 = FFF indiag(FFF inκκκs−1)FFF∗in
(7)

where FFF in,FFFout are matrices of the Discrete Fourier Transform of appropriate sizes and
κκκ,κκκs−1 are vector representations of convolutional kernels. After substituting the second
part of Equation 7 into Equation 2 we obtain:

KKKLLL = LLLFFF indiag(FFF inκκκs−1)FFF∗in (8)

We then multiply both sides of the equation with FFF in from the right.

(KKKLLLFFF in)i j = ∑
k
(LLLFFF in)ikdiag(FFF inκκκs−1)k j (9)

As the left hand side is per-column proportional to LLLFFF in, we can calculate the solution just
by using the first row of each matrix.

(FFF inκκκs−1) j =
(KKKLLLFFF in)1 j

(LLLFFF in)1 j
(10)

The first row of FFF in consists of ones so as the first row of LLLFFF in. Additionally, (KKKLLLFFF in)1 j =
s−1[κκκ,κκκ] j. As the discrete Fourier image of the solution is a scaled concatenated image of
the source, the solution is just a dilation of the original kernel [3].

Citation
Citation
{Loehr} 2014

SOSNOVIK, MOSKALEV, SMEULDERS: DISCO 3

1.2 Solutions in 2D
We are interested in solving Equation 1 with respect to κs−1 for any set of κ’s which forms a
complete basis in the space of square matrices of a certain, fixed size. If the solution exists
for any basis, then it exists for a basis of 2-dimensional separable kernels. As the rank of
the set of solutions is less or equal to the rank of the initial basis, the solution is separable as
well. Let us consider an image FFF of size Nin×Nin. Taking into account that its rescaling is a
separable operation, the matrix form of Equation 1 is:

KKK′LLLFFFLLLT KKKT = LLLKKK′s−1FFFKKKT
s−1LLLT , ∀FFF (11)

where KKK′ and KKK are matrix representations of 1-dimensional components of a separable
kernel. As Equation 11 holds true for all images, it satisfies FFF = fff cccT and FFF = ccc fff T where
ccc is a vector of constants and fff is an arbitrary vector. After substituting these functions into
Equation 11 it degenerates into a system of two independent equations up to a multiplication
constant: {

KKKLLL = LLLKKKs−1

KKK′LLL = LLLKKK′s−1

(12)

Thus, if a solution exists for 2-dimensional discrete signals it also exists for the 1-dimensional
case.

2 Implementation Details

2.1 Scale Convolution
Let us consider a scale-convolutional layer defined on scales {1,

√
2,2,2

√
2,4,}. The kernel

on the smallest scale is of size 3×3. As it was noted, as soon as the kernel on the intermediate√
2 scale is defined, all other kernel can be calculated via dilation.

In scale-convolutional layer the kernels κ are parametrized as follows:

κs = ∑
j

ψs, jw j (13)

where ψs, j is a j-th basis function defined on scale s, and w j is the corresponding trainable
coefficient.

As the basis is fixed during the training, it needs to be defined a priori. On the smallest
scale all basis functions are just elements of the standard basis, i.e. if ψ1,i is the i-th basis
function for the 3×3 filters on the first scale, then ψ1,0 is a 3×3 matrix where the only non-
zero element is a 1 in the top-left corner, and ψ1,4 is a 3×3 matrix with 1 in the center. On
the next integer scale 2, the basis is obtained according to Equation 12 of the main paper and
computed as a dilation of ψ1,i. To obtain non-integer scale bases we start by approximating
the first intermediate

√
2 scale basis ψ√2, j functions by minimizing the following objective

function:

‖L[f]?ψ1, j−L[f ?ψ√2, j]‖
2
F +‖L[f]?ψ√2, j−L[f ?ψ2, j]‖2

F (14)

where f is a random sample fromN (0,1) and L is an operation of downsampling by a factor
of
√

2 by using bicubic interpolation. The basis the scale {2
√

2} is calculated as a dilation
of the approximated

√
2 basis. See Figure 1 for more details.

4 SOSNOVIK, MOSKALEV, SMEULDERS: DISCO

Figure 1: Left: kernels are computed via multiplying a fixed multi-scale basis with trainable
weights. Right: images and their scale fields produced by the DISCO model trained to
contrast scales.

After all basis functions are calculated, the basis is packed into a tensor of size:

num_functions×num_scales×height×width

and used for runtime kernel calculations with the algorithm provided by [4].

2.2 Computational Complexity
Let us consider a scale-convolutional layer with a set of Ns scales with step σ > 1. The
smallest kernel size is W ×W . The computational complexity for calculating the output for
one spatial position for the state-of-the-art method from [4] can be estimated as follows:

O(SESN)∼ O(W 2(1+σ
2 + · · ·+σ

2Ns−2))∼ O
(

W 2 σ2Ns −1
σ2−1

)
∼ O(W 2

σ
2Ns) (15)

In contrast, for DISCO we arrive the following complexity:

O(DISCO)∼ O(NsW 2) (16)

Thus, where the state of the art SESN convolution grow exponentially in computational
complexity with the number of scales, DISCO allow for linear growth.

When using a scale step of
√

2 we achieve a speedup of:

O(SESN)

O(DISCO)
∼ 2Ns

Ns
. (17)

The main reason for the acceleration is that in SESN the filters are dense, as they are rescaled
in the continuous domain by using Equation 4 of the main paper, while DISCO filters are
sparse as the rescaling is performed by using dilation for the majority of scales. The actual
speedup depends on the particular implementation of scale-convolution with such kernels.
The current implementation is limited by the functionality of modern deep learning software
which is not optimized for sparse filters of a big spatial extend.

2.3 General Solution
While in many models which consider scale the scale-step is a root of some integer number,
it is possible to build a DISCO model with arbitrary scale-steps. Let us consider a scale-

Citation
Citation
{Sosnovik, Szmaja, and Smeulders} 2019

Citation
Citation
{Sosnovik, Szmaja, and Smeulders} 2019

SOSNOVIK, MOSKALEV, SMEULDERS: DISCO 5

Interpolation Nearest Bilinear Bicubic
Error 1.36±0.06 1.37±0.05 1.35±0.05

Table 1: Classification accuracy on MNIST-scale for different interpolation methods which
are used for approximate basis calculations.

convolutional layer defined on scales {s0,as0,a2s0, . . .aNs0} where a > 1. In order to con-
struct kernels for such a layer it is first required to calculate a basis {ψs0, j,ψas0, j, . . .ψaN s0, j}
for all j. The basis can be calculated as a minimizer of the following objective:

L(ψs0, j,ψas0, j, . . .ψaN s0, j) = E f

k,l=N

∑
k,l=0
k>l

‖Lal−k [f]?ψals0, j−Lal−k [f ?ψaks0, j]‖
2
F (18)

3 Experiments

3.1 MNIST-scale
As a baseline model we use the SESN model [4]. It consists of 3 convolutional and 2 fully-
connected layers. Each layer has filters of size 7× 7. We keep the number of parameters
the same for all SESN models and for DISCO. The main difference between the SESN
and DISCO models is in the basis for scale-convolutions. We also discovered that average-
pooling works slightly better for the DISCO, while for all other methods it either has no
effect or worsens the performance. Both SESN and DISCO use the same set of scales in
scale convolutions: {1,21/3,22/3,2}

All models are trained with the Adam optimizer [2] for 60 epochs with a batch size of
128. We set the initial learning rate at 0.01 and divide it by 10 after 20 and once more after
40 epochs. We conduct the experiments with 2 different settings: without data augmentation
and with scaling augmentation. We run the experiments on 6 different realizations of the
MNIST-scale. We report the mean ± standard deviation over these runs.

We found in our experiments that the interpolation method which is used to calculate a
basis by using equation 14 does not affect the final solution. The relative mean squared error
between bases is less than percent. Moreover, DISCO model demonstrates almost the same
results on MNIST-scale while various interpolation methods are used. See Table 1 for more
results.

3.2 STL-10
As a baseline we use WideResNet [5] with 16 layers and a widening factor of 8. Scale-
equivariant models are constructed according to [4]. All models have the same number of
parameters. The scale factors in the scale convolutions are {1,

√
2,2}.

The models are trained for 1000 epochs using the SGD optimizer with a Nesterov mo-
mentum of 0.9 and a weight decay of 5 · 10−4. For DISCO, we increase the weight decay
to 1 ·10−4. Tuning weight decay for the other models did not bring any improvement. The
learning rate is set to 0.1 at the start and decreased by a factor of 0.2 after the epochs 300,
400, 600 and 800. The batch size is set to 128. During training, we additionally augment the
dataset with random crops, horizontal flips and cutout [1].

Citation
Citation
{Sosnovik, Szmaja, and Smeulders} 2019

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Sosnovik, Szmaja, and Smeulders} 2019

Citation
Citation
{DeVries and Taylor} 2017

6 SOSNOVIK, MOSKALEV, SMEULDERS: DISCO

3.3 Scene Geometry by Contrasting Scales
For clarity we provide a PyTorch pseudo-code for DISCO scene geometry estimation (List-
ing 1). We utilize scale-equivariant ResNet as a backbone feature extractor. The produced
feature map is reduced in a spatial domain. Then the argmax along the scale dimension
is extracted and passed to the scale MLP regressor to produce a scale estimate. Additional
qualitative results are presented in Figure 1.

Listing 1: PyTorch pseudo-code for DISCO scene geometry estimation.
import t o r c h . nn as nn
import SE_ResNet

c l a s s S c a l e E s t i m a t o r (nn . Module) :
def _ _ i n i t _ _ (s e l f) :

super () . _ _ i n i t _ _ ()
s e l f . backbone = SE_ResNet (p r e t r a i n e d =True)
s e l f . r e g r e s s o r = nn . S e q u e t i a l (

nn . L i n e a r (5 1 2 , 2 5 6) ,
nn . ReLU () ,
nn . L i n e a r (2 5 6 , 1) ,
nn . ReLU ()

)

def f o r w a r d (s e l f , x) :
x . shape = B , 3 , 64 , 64
y = s e l f . backbone (x)
y . shape = B , 512 , 9 , 1 , 1
y = y . mean (− 1) . mean (−1)
y . shape = B , 512 , 9
y = y . argmax (−1)
s c a l e = s e l f . r e g r e s s o r (y)
re turn s c a l e

References
[1] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neu-

ral networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[3] Nicholas Loehr. Advanced linear algebra. CRC Press, 2014.

[4] Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. Scale-equivariant steerable net-
works. arXiv preprint arXiv:1910.11093, 2019.

[5] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

