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Let consider the sequence of frames x0, . . . ,xGOP. To compress the full sequence, the first
frame, I-Frame or Keyframe, is compressed by an image compression codec to x̂0. Given
this compressed I-Frame, the codec computes the flow field f= (fy, fx) to the next frame. The
decompressed flow field f̂ is then used to warp the previous frame x̂warp

t+1 = billinear
(
x̂t , f̂

)
.

Similar as in [2] we use a Motion Compensation network to fix obvious errors of the warp,
which eventually results in the final prediction xPred

t+1 . To compress the optical flow f we use
the same auto encoder architecture as proposed in [1]. In our implementation we use spatial
pyramid network [4] for flow field estimation.

To compute the latent residuals, we first encode both frames, xPred
t+1 and xt+1 with the

pre-trained HiFiC encoder and take the difference of the encodings rt+1 = yt+1−yPred
t+1 . The

probability distribution of the residuals is then learned with a Scale-Hyperprior [1]. By
adding the decompressed residuals and the encodings of the prediction ŷt+1 = r̂t+1 + yPred

t+1
we obtain the latents of the next frame x̂t+1.

The training of the model is separated into four stages. In the first stage, we only train
the motion vector compression network. The loss we optimize is defined as:

Lwarp = λwr (ŵt+1)+MSE
(
xt+1, x̂warp

t+1

)
(1)

where wt+1 is the encoding of flow field f and λw is a hyperparameter controlling the
trade-off between the distortion term and the rate term r (ŵt+1).
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In the second phase, the Motion Compensation network is trained by optimizing the
following loss:

Lmc = λwr (ŵt+1)+ kMMSE
(

xt+1,xPred
t+1

)
+ kML1

(
yt+1,yPred

t+1

)
. (2)

Note, that the L1 forces the model to learn predictions with latents close to latents of the
ground truth image xt+1.

The loss of the third phase is defined as:

Lstep = λw (r (ŵt+1)+ r (r̂t+1))+ kMMSE (x̃t+1, x̂t+1)+ kpdp (xt+1, x̂t+1) . (3)

Important to note, in this phase we make use of the teacher-decoder. We minimize the
loss between the compressed P-Frame x̂t+1 and the HiFiC compressed frame x̃t+1.

In the fourth and final phase we optimize for N = 3 frames in one optimization step, to
consider more temporal information and alleviate error accumulation [3]:

L f inal = λ

N

∑
i=1

(r (ŵi)+ r (r̂i))+
N

∑
i=1

kMMSE (x̃i, x̂i)+ kpdp (xi, x̂i) , (4)
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