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7 Supplementary Material

In this supplementary material, we provide more additional results that are organized as
below:

• Sec.7.1 Additional qualitative results compared with the state-of-the-art baselines.

• Sec.7.2 Additional qualitative results of our model test on selfie2anime dataset and
CelebA-HQ dataset.

• Sec.7.3 Additional results in 256×256 resolution image.

• Sec.7.4 The illustration of network architecture used in the main paper.

7.1 Qualitative results compared with baselines

In this subsection, we show additional results compared with baselines [1, 2, 4, 5]. As
mentioned above, we define content as the contours of the face and hair, some items (such
as eyes and hats). And the style is defined as animation rendering, skin tone, hair color,
eyes etc. Additional results further prove our model can improve the preservation of content
feature of input images. The latent-guided translated images produced by each model are
shown in Figure 1. The latent-guided translation is that uses latent code to generate vectors
as style vectors to synthesis output images. In another word, it is translated input images
with random style vectors. The reference-guided translated images produced by each model
are shown in Figure 2.

7.2 Qualitative results from our model

In this subsection, we show additional translated results generated by our model. The latent-
guided translated images which are test on selfie2anime dataset produced by our model are
shown in Figure 3. Moreover, the model trained on selfie2anime dataset is used for testing
on the CelebA-HQ dataset. The latent-guided and reference-guided translated images which
are test on CelebA-HQ produced by our model are shown in Figures 4 and 5, respectively.
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Figure 1: Qualitative comparison of latent-guided translation results. From left to right:
input selfie, MUNIT, DRIT, DSMAP, StarGAN v2 and our model.

Method StarGAN v2 DSMAP Ours
FID 115.53 116.97 85.10
LPIPS 0.3552 0.4163 0.3431

Table 1: FID and LPIPS results compare to StarGAN v2 and DSMAP in 256 ×256 reso-
lution. A low FID indicates high visual quality. A low LPIPS indicates that the translated
images will not have structural changes depending on the different reference images.

7.3 Qualitative results and quantitative results compared with
baselines in 256×256 resolution image.

In this subsection, we show additional results compared with StarGAN v2 and DSMAP [1, 2]
in 256 × 256 resolution images. As shown in Figure 6, when using training image with a
resolution of 256×256, the quality of the image generated by StarGAN v2 is not as good as
when the resolution is 128×128. Obviously, the images generated by our model are of high
quality, and the content feature is also preserved. As shown in Table 1, our model achieves
the lowest FID and LPIPS compared to the baselines. In the FID results, better results than
translated images in resolution of 128×128 were obtained.

7.4 Illustration of network architecture
We present details of architecture of subnetworks: (1) the content encoder (See Figure 7);
(2) the decoder (See Figure 8); (3) the style encoder (See Figure 9); (4) the mapping network
(See Figure 10); (5) the discriminator (See Figure 11).
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Figure 2: Qualitative comparison of reference-guided translation results. Each model trans-
lates the input selfie into anime domain and reflecting the styles of the references images.

Figure 3: Additional latent-guided translation results on selfie2anime dataset from our
model.
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Figure 4: Latent-guided translation results on celebA-HQ dataset from our model which is
trained on selfie2anime dataset.

Figure 5: Reference-guided translation results on celebA-HQ dataset from our model which
is trained on selfie2anime dataset.
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Figure 6: Reference-guided translation results. From left to right:input selfie, StarGAN v2,
DSMAP, ours and reference image.

Figure 7: The architecture of the content encoder. An input image, i.e., Ix ∈ R128×128×3, is
converted to content feature with the output size in R16×16×512.
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Figure 8: The architecture of the decoder. The content feature with the size R16×16×512 is
converted to output image with the output size in R128×128×3. The style vectors are used to
normalize the decode features by AdaIN [3]. The encode features are used to enhance the
content feature by ACFE block.

Figure 9: The architecture of the style encoder. An reference image, i.e., Iy ∈ R128×128×3,
is converted to style vector (also called style feature) with the output size in R64×1 for each
domain.
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Figure 10: The architecture of the mapping network. The latent code with the size R16×1 is
converted to style vector with the output size in R64×1 for each domain.

Figure 11: The architecture of the discriminator. An input image, i.e., Ix,y ∈ R128×128×3, is
converted to scalar for each domain.
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