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Scale estimation for two-step baselines

Existing two-step pipelines for model-to-scene alignment has shown that bounding boxes
provide a good estimate for the relative scale between objects with sufficient overlap [3],
which can be used for a later 6DoF alignment step [5, 7]. We adopt the bounding box based
method for estimating a relative scale, which consists of an outlier filtering step and a bound-
ing box estimation step. Outlier filtering is done with the KNN algorithm as the following:
First compute for each point the mean distance to its K nearest neighbors. Average KNN dis-
tances for all points give a distribution with a sample mean y and sample standard deviation
o. All points with a mean KNN distance greater than it +20¢ are classified as outliers, which
approximately corresponds to an outlier ratio of 2.3% under the normal distribution assump-
tion. Optimal bounding boxes are estimated using the algorithm of Chang et al.[1]. Let B,
and B,, denote the bounding boxes of the source and the target, respectively. The scale is set
as the ratio between the lengths of the bounding box diagonals, s;,;y = Diag(B,,)/Diag(By).

Candidate rotations after alignment

As discussed in section 3.1, the output of the rotational initialization is a list of 24 rotation
matrices {R; 1‘221- This is done by aligning the 3-frames with all permutations of the three
axes (3! in total) and combinations of the orientation of each axis (2% in total). Simple
application of the right-hand rule (or left-hand rule) can eliminate half of the candidates,
giving a final number of 24. Fig. 1 shows the complete list of rotational initialization.

EM algorithm for estimating 3-frames
Notations. Let:
e n; € R3 be the surface normal of the i-th planar shape.

e N={ny,...,n,} be the set of surface normals.

e a; € R be the surface area of the i-th planar shape.
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Figure 1: Demonstration of the 24 initial rotations and the corresponding output after refine-
ment. The input point cloud and the mesh are shown on the left, together with their 3-frames
(red and blue, resp.). For each initial rotation, the alignment after applying the rotation ma-
trix is shown on the top-left frame, and the refinement output is at the bottom right. The loss

before and after refinement is shown below. The best path is indicated by a red arrow.

e w; = f(a;) € R be a non-negative weight assigned to the i-th planar shape. In this
thesis, we simply define the function f as f : x € R — x € R such that the weight is
proportional to the shape area.

o W= {w,...,wy,} be the set of weights.

o 0, = {M;,X;} be the parameters defining the k-th Gaussian component, with mean
U, € R? and covariance X € R¥*3.

o p(x]|0) =N, (x; ,X) be the probability density of a multivariate Gaussian distribution
at x, under a distance metric defined by the function g : R? x R® — R.

e {m,..., ik } be mixture coefficients, where m; < 0 is the coefficient for the k-th Gaus-
sian component, satisfying Y& | 7, = 1.

The algorithm clusters the surface-normals of a set of planar shapes into 3 clusters, un-
der the Gaussian mixture model assumption for weighted data. The distance metric is the
absolute cosine similarity metric for measuring the distance between two normal vectors on
the spherical surface. The pseudo-code is given in Algorithm 1.

Derivation for continuous optimization

Transformations in 3D space can be represented as Lie groups [8, 11]. In particular, the
similarity transform matrix belongs to the Sim(3) Lie group. The associated Lie algebra
sim(3) of the Sim(3) group is a vector space of dimension 7. The basis element of the Lie
algebra are called generators. The generators of sim(3) correspond to differential translations
(G1,G»r,G3), derivatives of rotation around the each of the standard axes (G4, Gs,Gg), and
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Algorithm 1 Weighted-data clustering with the EM algorithm
Input: N={nj,....n, }, W={wy,....,wy}
Output: {m,....,m}, {,,Z1,..., U3, 23}

Initialize my, W, Xy for all k

while not converging do

. . nk./\/g(n;;ek,wi,i):‘.k)
p(zi =k[n;; 0,wi) := ):5{:1 ”iNg(ni;Bj,Vl,’_Ej)
=~ Y0 p(zi = k|nj; 0,w;)
. X wip(zi=k|n;0,w;)n;

B = 5 i a=Himis i)

Normalize u;

T = X, wip(zi=k|n;;0,wi) (ni—py) (mi— g )T
: Y2 p(zi=k[n;0,w;)

end while

the derivative of scale change (G7):
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An element of sim(3) is represented as a linear combination of generators,
u1G1 +uyGr +u3G3 + 0G4 + G5 + 3G + AG7 € sim(3) 2

where (u; @; 1) € R’.

We denote € = (u; @; 1) € sim(3) for convenience. The Lie algebra is linked to the Lie
group by an exponential map which is a bijective function converting any element in the
tangent space to exactly one transformation in the group. Specifically, the exponential map
from sim(3) to Sim(3) is the matrix exponential given by

w/\
ew(®) = g Y|
I 0" u +l (@")? @'u—Au
- 0" —A| 21| 0 A2

_ [exp(@") v .
= { o exp(—?t)} € Sim(3)
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where @” is the skew-symmetric matrix associated to vector @, exp (@”) is the rotation
matrix, v denotes the translation component and exp (—A ) is the scale change. For § € Sim(3)
and a point p € R?, differentiation of Sp by & is performed by implicitly left multiplying the
transformation by the generators representing infinitesimal perturbations.

Qualitative analysis

Fig. 2 visualizes the registration results of each method on two examples (a free-form ob-
ject and a regular object). The input point clouds are significantly perturbed from the
ground-truth alignment. For local methods, we show both results with and without an FPFH-
based RANSAC initialization. Classical feature-based global methods like FGR do not offer
enough robustness to variations in the shape characteristics. On the free-form object (top),
the family of probabilistic approaches (CPD, BCPD++, and FilterReg) benefits more from
the RANSAC initialization than the ICP approaches. Point-based learning method DCP fails
to register point clouds with large numbers of points, due to its high memory consumption.
Volumetric learning-based approach DGR is able to produce more accurate correspondences,
but requires accurate estimation of the relative scale as a pre-processing step. Our method
recovers well the alignment for both types of objects, achieving satisfying accuracy.
Fig. 3 visualizes our results on all 19 pairs of objects in the dataset.
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Figure 2: Visualization of results registered by each method on a free-form object (top) and
a regular object (bottom). The 3-frames of the input point cloud and the mesh are shown (red
and blue, respectively). Our method achieves satisfying alignment for both types of objects
under large transformation.
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Figure 3: Visualization of our results on 19 examples from the dataset, with random pertur-
bations in rotation between 90° and180 °, in translation between 0 and 100% of the diameter,
and in scaling between 0.25 and 2. For each example, the input is shown on the top (gray
region), with the aligned result on the bottom.



