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In this supplemental material, we present preliminaries of hashing and quantization in
Section 1. In Section 2, we show approximation error analysis, and computation and memory
analysis of HQ. Finally, we provide data statistics, implementation details and additional
experiments about retrieval efficiency in Section 3.

1 Preliminaries

Binary hashing Given input x € R”, we compute binary code h, = H(x) € R”, where H(e) is
a function that maps continuous value to {+1,—1}. The similarity measurement is Hamming
distance:

dist(hy, hy) = sum (hy XOR hy) ()

The larger the value, the greater the dissimilarity between the two.
Quantization Given input x € R”, we compute the quantization x ~ Cb,, where C € R"*¥ is
the dictionary book, b, € R¥ is the index indicator for x. We assume the input is assigned to
only one entry of the dictionary: ||b||, = 1. Different inputs will share the same C but will
have different index indicators. We use Asymmetric Quantizer Distance (AQD) to measure
quantization similarities:

AQD(x,y) = x" (Cby) (2)

A greater value correlates with a greater similarity between the two. Generally, quantization
preserves more information than binary codes, though it is slower at searching step since
AQD requires more computation than Hamming distance.
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Figure 1: Binary hashing and quantization.
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Model Memory Computation
Lossless O(32Nn) O(Nn)
Quantization O(32mkn + Nmlog, k) O(mkn+Nm)
Binary hash O(Nn) O(Nn)
HQ O(Nn+32mkn+ Nmlog, k) | O(Nn+mkn+ otNm)

Table 1: Memory and computation analysis for different models. We assume the total number
of items in database is N, dense feature dimension n, each of the m quantization dictionary
book has length &

2 Analysis

In this section, we theoretically show that minimizing HQ’s loss function can provide the best
compact code error. We also analyze computation and memory complexity of HQ and other
hashing methods in the cross-modal retrieval task.

2.1 Approximation Error Analysis

We use h;,hj,Cb;,Cb; and f;, f; to represent binary codes, quantization codes and dense
features for data i and data j from different modalities.

Hashing error Even though Hamming distance is used for computing binary code dis-
tance, we use the relaxed Euclidean distance to compute the error bound since it is convex.

(d(hi, ) —d(fir £7)]
= ||| = [ = || = £33 3)
= |llsgn(f:) —sen(F)| ~ N fi— £ |

Minimizing Equation 3 is equal to minimizing the distance between sgn(f;) and f;. In other
words, the continuous feature should be close to +1 or -1. We achieved this by adding a tanh
layer after the final feature layer.

Quantization error Since AQD approximates inner product distance, we compare AQD
with direct inner product results using continuous features f.

40D (i, j) —d(fi, £)| = ()" Cb; — (F)T il <Ifilll £ = Cby| @

Because || f;|| is a fixed scalar which does not effect the relative distance measurement, we
only need to minimize || fi bejH: the distance between dense feature and quantization
feature. This term already exists in the loss function L,. Thus, we are guaranteed to get best
quantization error by minimizing our proposed loss function.

2.2 Computation and Memory Analysis

In this section, we compare the computation and memory efficiency of HQ with the method
which only uses quantization.

Memory requirement for quantization is O(32mkn + Nmlog,k): since we have m dic-
tionary books and each book has k n-length features, we need O(32mkn) to store the dictio-
nary books when data is in single-precision float(32bits). For each data point, we will use
O(mlog, k) to store the m one-of-k indicator (log, k bits) b. We assume we have N data points.
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Figure 2: NUS-WIDE Image-label distri- Figure 3: MIR-Flickr Image-label distri-
butions. butions.
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tions.

Memory requirement for binary hashing feature is O(Nn). Note that if we use a lossless
model which uses continuous features), it will be O(32Nn).

For the quantization model, we can pre-compute the dot product between the query and
each dictionary with O(mnk) operations and store it in a temporary look-up table, then we
need O(m) additions to compute the AQD distance between query and each data point with
the look-up table. Overall, we need O(mnk + Nm) operations to complete one query retrieval
with the quantization model, while we need O(Nn) for the hashing model. We show the
complexity comparison between the lossless model, the quantization model, and the hashing
model in Table 1. Quantization and hashing are more memory efficient than the lossless
model.

3 Experiments

3.1 Dataset

We used NUS-WIDE dataset [1], MIR-Flickr dataset [3] and Amazon Review [6] for experi-
ments. The NUS-WIDE public web image dataset contains images associated with textual
tags. Besides, each image-tag pair is annotated with one or multiple labels from 81 concept
labels, such as “nature,” “water,” and “sunset.” MIR-Flickr consists of 25,000 images col-
lected from the Flickr website. Each image-tag sample belongs to at least one of the 24 labels,
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Time
I1—-T | T—1
DJSRH 120M 3.19 2.69

JDSH 62M 2.73 3.03
HQ 62M 2.62 2.36

Table 2: The retrieval time (seconds) on NUSWIDE (a total of 2,100 queries over 13,650 data
points, Number of parameters is computed using model.parameters() in Pytorch. All models
use 128-dim hash code).

Models | #Params.

99 <

such as “sky,” “car,” “lake.” We selected Amazon Grocery and Gourmet Food category and
used their image-title pairs as training/test data. Each image-title belongs to at least one of the
14 categories, such as “meat,” “fruit,” and “spices”.

Figure 5 shows an image-to-text retrieval example. Here, we retrieved a group of text tags
in the database for a given query image. From the retrieved tags, we list up their associated
labels. Since the highlighted labels exist in the image’s labels (i.e. female, people, plant-life,
tree), we consider the retrieval is correct.

3.2 Implementation Details

To extract image features in NUS-WIDE and MIR-Flickr, we initialized image feature
extraction networks with pre-trained VGGNet-19 [7] for Section 5.3 and with AlexNet [5]
pre-trained on the ImageNet dataset [2] for Section 5.4. Amazon image features are provided
by the original paper [6]. In all datasets, final image features are 128-length vectors. For text
features, we followed previous work [4] and extracted 1,000, 1,386 and 1,000 most frequently
used tags/words for NUS-WIDE, MIR-Flickr and Amazon, respectively, and created bag-of-
word vectors for text inputs. These vectors were converted to the final 128-length text features
using a two-layer MLP.

We cross-validated the hyper parameters and finally set A, = 0.0001, Ay, = 70, A, =0.01,
Ay = 0.01 for NUS-WIDE experiments, A, = 0.0001, A, = 50, 4, = 0.01, A;, = 0.01 for MIR-
Flickr experiments and 4, = 0.001, A, = 10, 4, = 0.01, A;, = 0.001 for Amazon experiments.
A, was set especially small because we observed quantization loss decreasing much faster
than other losses. aN = 100 is set for all experiments. All experiments were performed on a
NVIDIA GeForce GTX 1080 Ti. All codes were written with PyTorch 1.1.0.

3.3 Additional experiments about retrieval efficiency

Table 2 shows the number of model parameters and retrieval time of DJISRH, JDSH, and
HQ on NUS-WIDE dataset. Note that JDSH requires less parameters than DJSRH, for it
is a simplified DISRH. While HQ and JDSH have the similar number of parameters, HQ’s
retrieval time is faster. This proves HQ’s efficiency.
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