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1 Implementation Details

1.1 Data Processing
We conduct our experiments on the Visual Genome (VG) dataset [7] which contains a total
of 108,077 images, each annotated with a scene graph. We process the data in the VG
following sg2im [6]. Specifically, the data are divided into 80% training set, 10% validation
set, and 10% test set. We calculate the occurring frequency of objects and relationships in
the training set, and reserve the top 178 objects and 45 relationship types. Small objects are
discarded, and each image incorporates 3 ∼ 30 objects and at least one relationships. The
scene graph of each image is updated according to the above process. We then collect all
textual triplets (head entity, relationship, tail entity) of scene graphs to form a Knowledge
Graph (KG) which stores the interactions between objects in common scenarios. As shown
in Figure 1, we also use the graph database, Neo4j, to store and visualize the KG. Table 1
shows some attributes of VG.

Item ]Train ]Val ]Test ]Objs ]Relations ]Triplets

Num 62,565 5,506 5,088 178 45 333,047

Table 1: Attributes of VG. ]Objs denotes the number of object categories. ]Relations denotes
the number of relationship categories. ]Triplets denotes the number of all triplets after data
pre-processing.
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Figure 1: The process of building a KG. The left figure in (d) is the abstraction used in our
paper, while the right one is the visual representation of the KG using Neo4j.

1.2 Evaluation Metrics

We employ four metrics to evaluate the performance of the proposed method and the state-
of-the-arts.

Inception Score (IS). IS [10] is widely used to measure the quality and diversity of generated
images. Like previous works [8, 11], we employ the pre-trained network, Inception-V3 [13],
to extract image features and compute the IS. A higher IS is better.

Fréchet Inception Distance (FID). FID [5] measures the distance between the distributions
of generated images and ground truth. A lower FID means the generated images are more
similar to the real images.

Diversity Score (DS). DS [16] reflects the diversity of generated images by evaluating the
perceptual similarity between a pair of images given the same input. A higher DS is better.

Classification Accuracy (AC). AC measures the quality of each object in the generated
images through a classification network. As described in [1, 17], we first crop object patches
from ground truth images and then employ the Resnet-101 [3] to train an object classification
network based on them. During testing, we compute the classification accuracy for objects
in the generated images. Higher AC means the generated objects are more recognizable.

1.3 More Details of Ablation Study

In Section 4.3 of the manuscript, to further validate the effectiveness of our method, we
design several baseline networks for ablation studies. In this subsection, we describe +Cat,
+Global, and +TAM w/o Rel in details.

In particular,+Cat concatenates the knowledge vector ki ∈RD and the structure represen-
tation si ∈ RD to obtain a vector of dimension 2D, which is then mapped to a D-dimensional
vector ei; +Global introduces global knowledge information of the scene graph into the gen-
eration process, inspired by [14]. Given a scene graph, all knowledge vectors are pooled and
transformed by a fully-connected layer to output a global vector with dimension D

4 . Then,
the global vector is expanded to the size of H ×W × D

4 , in which H ×W is the resolution
of the generated image. Finally, the global tensor is concatenated with the scene layout and
fed into the CRN to generate the image; +TAM w/o Rel integrates visual features output by
the CRM and knowledge embeddings of objects, ignoring relationships in triplets. Without
considering the information of relationships, we directly input knowledge embeddings of
objects to a fully-connected layer and aggregate them to obtain the knowledge matrix Y with
size n×d, where n is the number of objects in the scene graph, d is the channel dimension
of the feature output by CRM. Other operations remain the same as TAM.
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Method IS↑ FID↓
Real Imgs 20.5±1.5 -
sg2im*[6] 8.1±0.2 59.94
Label2im* 12.5±0.2 36.72
sg2im+LostGAN-v2 [12] 9.0±0.1 35.70
Label2im+LostGAN-v2 [12] 9.5±0.3 34.71
sg2im*(GT) 8.3±0.2 56.17
LostGAN-v2 [12] 10.7±0.3 29.00
Label2im*(GT) 13.7±0.2 34.32

Table 2: Performance of the 128×128 images generated by the evaluated methods on VG.
In particular, sg2im* means the reproduced model for 128×128 images. Label2im* means
our model to generate images at the resolution of 128×128.

2 Additional Experiments and Discussion

2.1 Discussion of High Resolution
Similar to [6], we employ a Cascaded Refinement Network (CRN) [2] consisting 5 Cascaded
Refinement Modules (CRMs) to generate 64× 64 images (reported in the manuscript). In
this subsection, we conduct preliminary experiments on the fine-tuned version of Label2im
to generate 128× 128 images, reported in Table 2. Based on the supplementary material
of sg2im [6], we reproduce the high-resolution version of it to generate 128× 128 images,
named sg2im* in Table 2. Specifically, we add an extra CRM to CRN and a convolutional
layer to each discriminator. For our method, we apply the SGRM and TAM (applied after
2nd, 3rd, 4th, 5th CRM) into sg2im*, named as Label2im* in Table 2.

In addition, Table 2 also presents the results of replacing the layout-to-image generator
with LostGAN-v2 [12]. Specifically, sg2im+LostGAN-v2 means using sg2im to predict lay-
outs and LostGAN-v2 to generate images. Label2im+LostGAN-v2 means using Label2im
to predict layouts from scene graphs and LostGAN-v2 to produce images. Compared to the
baseline method, Label2im* achieves great improvement in three cases: giving scene graphs,
replacing the generator, and giving ground truth boxes(GT). Label2im* achieves impressive
performance to generate images at the resolution of 128× 128 on IS. Figure 2 shows some
visual results of Label2im*.

2.2 Discussion of Triplet Attention Module
Taking the resolution of 64 as an example, we discuss where to apply Triplet Attention
Module (TAM) in this subsection. As shown in Figure 3, TAM can be flexibly applied after
each CRM layer, with a total of 5 positions available (layer 0, 1, 2, 3, 4). In order to explore a
reasonable application plan for TAM, we set up several experiments and the results are listed
in Table 3.

In Table 3, No.1 denotes the baseline method without TAM. From No.2 to No.4, the
performance of the generation models improves with the increase of TAMs, and the network
with three TAMs applying after the 4th, 3rd, and 2nd CRM achieves the best performance.
However, we find that the performance does not get better if we further introduce TAMs to
shallower layers, e.g. layer1 and layer0. It may be because that visual features in shallower
layers lack semantic information and thus have large gaps between knowledge representa-
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Figure 2: Visual results of Label2im* to generate 128×128 images from the given scene
graphs. GT means using ground truth boxes.

tions. Therefore, in our experiments, we apply TAMs in the last three CRMs to generate
images at the resolution of 64.

2.3 Discussion of KG

The KG for scene generation needs to store the interactions between objects in the form of
triplets. In this subsection, we also filter and extract the triplets from the VRD [9] dataset
(widely used for visual relation detection [15]). Depending on these different sources of
KG, we train KG2E [4] separately to get knowledge embeddings of the objects and the
relationships.

Since the requirement of the knowledge corresponding to the labels and relationships
in SGRM and TAM, it is difficult to test on VG directly when the source of knowledge is

Figure 3: The optional positions in CRN for TAMs.
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No. layer4 layer3 layer2 layer1 layer0 IS↑ FID↓
1 - - - - - 6.7±0.1 50.93
2 X - - - - 6.9±0.1 48.64
3 X X - - - 7.2±0.2 44.89
4 X X X - - 7.4±0.2 43.49
5 X X X X - 7.3±0.1 44.21
6 X X X X X 7.3±0.2 43.62

Table 3: Performance evaluation of TAM applied in different positions in terms of IS and
FID. X indicates that TAM is used after the CRM in the CRN.

Dataset ]Objs ]Relations ]Triplets
VG 178 45 333047
VRD 100 70 30355
Source of Source of images Source of scene graphs IS
knowledge for train for test ↑
VG VG Intersection-200 3.6±0.2
VRD VG Intersection-200 3.2±0.4
VG+VRD VG Intersection-200 3.5±0.2
VG+VRD VG VG 7.2±0.2
VG (Ours) VG VG 7.4±0.2

Table 4: The upper part of the table shows the statistics of the datasets. ]Objs denotes
the number of object categories. ]Relations denotes the number of relationship categories.
]Triplets denotes the number of triplets we collect. The bottom of the table shows the results
of 64×64 images generated from the scene graphs. Source of knowledge denotes the source
of the triplets to obtain the knowledge embeddings using KG2E. Source of images for train
means on which dataset the Label2im model is trained. As for the source of scene graphs for
testing, Intersection-200 contains 200 scene graphs, randomly constructed.

VRD. Therefore, we construct another test set based on the intersection of the VG and VRD
datasets. The intersection contains 65 objects and 16 relationships. Each time, we randomly
select 5 objects from 65 objects as the label set, and then used SGSM to randomly generate
20 scene graphs from the selected labels. After 10 operations in this way, 200 scene graphs
are obtained to be the test set for this experiment, named Intersection-200. We mainly focus
on the 64×64 images. Table 4 shows the quantitative results.

As shown in Table 4, IS slightly decreases when the source of knowledge changes from
VG to VG+VRD. This may be due to the low number of triplets from VRD. Specifically,
during knowledge representation learning, VRD increases the number of object categories
but fails to provide enough triplets to learn the knowledge information of the increased part.
This leads to insufficient overall knowledge learning. In future work, we can construct a
more adequate and large KG to learn more effective knowledge representations.

2.4 Discussion of SGSM
We imitate the user’s usage process to generate images from the given labels (light, bed,
door, window). As shown in Figure 4 (a) to (f), the scene graphs generated by SGSM are
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mostly reasonable. Figure 4 (g) shows the case of the unreasonable scene graph. The reason
for the unreasonableness is the contradiction between the two relationships (with and above)
in terms of the spatial layout. In future work, we can focus more on the spatial location
of different relationships and learn some rules to constrain SGSM for better scene graph
selection.

3 More Visual Results
In this section, we show more visual results at the resolution of 64.
User Interface of Label2im. As shown in Figure 5, Label2im provides users with conve-
nient and diverse options for generating images from labels. First, users pick out desired
objects and specify the number of relationships and generated images. Then, the system
automatically constructs scene graphs respecting the label set. Finally, users can obtain a
diverse of realistic images.
Qualitative Evaluation of Comparison Methods. We show more visual results of the
proposed Label2im and comparison methods in Figure 6 and Figure 7. Since we can not get
the whole pre-trained model of PasteGAN [8], in Figure 6 we take the same scene graphs
demonstrated in the paper [8] (the first row) as input, the generated images by the proposed
Label2im are illustrated in the third row. We crop the visual results of PasteGAN from the
paper and show them in the second row. Note that the PasteGAN employs real object crops to
provide visual features during training and test time, and our method generates images from
random noises. From Figure 6, we can see that the proposed Label2im is able to generate
realistic and competitive images.
Visual Results of Ablation Studies. More visual results of ablation studies (see details in
Section 4.3 in the manuscript) is illustrated in Figure 8, which demonstrates the effectiveness
of each main component of Label2im.
Diversity of Label2im. Figure 9 shows that the proposed Label2im is able to generate
a diverse of realistic images given the same set of object labels. Given object labels, our
method randomly explores possible relationships of objects from the KG and forms a series
of scene graphs, which provides great potential for generating images with quite different
appearances and reasonable layouts.
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Figure 4: Random results of the given labels (light, bed, door, window).
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Figure 5: The interface of the proposed Label2im which allows users to specify object cate-
gories for generating images.

Figure 6: Visual evaluation of the proposed Label2im and PasteGAN [8].
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Figure 7: Qualitative evaluations of the proposed Label2im and the state-of-the-arts, includ-
ing sg2im [6] and Layout2im [17]. *-sg means that using ground truth scene graphs during
test time. GT means using ground truth bounding boxes of objects.
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Figure 8: Visual results of ablation studies given scene graphs.
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Figure 9: Diversity of Label2im. Given the same set of object labels, the proposed Label2im
is able to generate a variety of realistic images.
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