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1 Overview

In this supplementary material, we describe the architecture details and show the additional
experiments as follows:

• In Section 2, we describe the architectures of two generators, i.e. Gn2c and Gc2n, and
three discriminators, i.e. DC, DT , and DS, in our framework.

• In Section 3, we show the additional results on CBSD68 [9] corrupted by AWGN with
a noise level σ = 25.

• In Section 4, we show the additional qualitative results on real-world noise, i.e. Low-
Dose CT authorized by Mayo Clinic [11] and SIDD [1].

• In Section 5, we show the results of an additional ablation study to demonstrate the
validity of the perceptual loss LV GG, the cycle consistency loss LCC, and the recon-
struction loss LRecon.

• In Section 6, we show the results on several noise types, such as structured noise and
Poisson noise, to evaluate the generalization ability of our method.
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2 The Details of Architectures

Generator Gn2c For the noise removal generator Gn2c, we adopt the network introduced
by [2]. The main idea of this architecture is multiple cascading connections at global and
local levels which help to propagate low-level information to later layers and remove noise.
The details of Gn2c are illustrated in Figure 1 and 2.

Generator Gc2n For the generator Gc2n, we adopt the U-Net based network that is similar
to the architecture introduced by [7]. The role of this network is to translate images from the
noise domain to the clean domain. The details of Gc2n are illustrated in Figure 3 and 4.

Discriminators DC and DT For the discriminators DC and DT , we employ the 70× 70
PatchGAN discriminator [6] which classifies whether 70×70 image patches are real or fake.
The details of DC and DT are illustrated in Figure 5.

Discriminator DS For the spectral discriminator DS, we employ the single linear unit as
the spectral discriminator. The DS takes a high-pass filtered 1D spectral vector and aims to
classify whether the spectral vector is real or fake.

C C C

Residual Block ReLU1x1 Convolution C Concatenation

Figure 1: The architecture of Cascading Block used as the basic component in the Gn2c. We
use the Residual Block proposed by [5] and the ReLU.

3x3 Convolution ReLUCascading Block 1x1 Convolution

C C C

C Concatenation

W x H x 64 W x H x 64 W x H x 64 W x H x 64 W x H x 64 W x H x 64 W x H x 3

Figure 2: The architecture of generator Gn2c for noise removal. We use the convolution with
kernel size=3, stride=1, and padding=1.
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3x3 Convolution Instance Normalization LeakyReLU + Element-Wise Summation

+

Figure 3: The architecture of Instance Residual Block used as the basic component in
the Gc2n. We use the convolution with kernel size=3, stride=1, and padding=1 and the
LeakyReLU with a slope of 0.2.
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Figure 4: The architecture of generator Gc2n. We use the convolution with kernel
size=3, stride=1, and padding=1 and transposed convolution with kernel size=3, stride=2,
padding=1, and output padding=1.

3 Additional Results on AWGN

We additionally visualize the results for CBSD68 images corrupted by AWGN with a noise
level σ = 25 and show the PSNR and SSIM in Figure 6 and 7. In Figure 6, our method
outperforms other methods trained with unpaired dataset by at least +3.44dB and +0.08 in
terms of PSNR and SSIM, respectively. LIR and N2V spoil the color and lights, but our
method preserves both the color and lights and successfully removes the noise. We also
show the challenging example that has repetitive high-frequency patterns hard to distinguish
with noise in Figure 7. Our approach removes noise without artifact and also preserves
the patterns of the zebra. Although our method is trained under unpaired settings, it shows
comparable performance in PSNR and SSIM with the supervised models in Figure 7. Fur-
thermore, compared to methods trained with unpaired dataset, our approach achieves the
best performance in both PSNR and SSIM.
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Figure 5: The architecture of discriminators DC and DT . We use the convolution with kernel
size=4 and padding=1. Followed by the convolution, we use the spectral normalization [10]
and the LeakyReLU with a slope of 0.2.

4 Additional Qualitative Results on Real-World Noise

4.1 Low-Dose CT

In this subsection, we show the additional qualitative results on Low-Dose CT dataset au-
thorized by Mayo Clinic [11] in Figure 8. As shown in Figure 8, previous methods tend
to lose details and generate blurred results. However, our method removes the noise, while
preserving the details of organs. It shows that our method is also practical for medical image
denoising.

4.2 Real Photographs

In this subsection, we visualize the additional qualitative results on SIDD [1] in Figure 9
and 10. As shown in Figure 9, previous methods tend to lose the texture and leave the
noise. In contrast, our method removes the noise while preserving the texture compared to
other baselines. In Figure 10, we observe that our method removes the intense noise while
preserving the color of images compared to other baselines.

5 Additional Ablation Study

We conduct an additional ablation study to demonstrate the validity of the perceptual loss
LV GG, the cycle consistency loss LCC, and the reconstruction loss LRecon. First, to verify the
effectiveness of the LV GG, we only add the LV GG. As shown in Table 1, when the LV GG
is used, both PSNR and SSIM increase by 0.07dB and 0.0068. It demonstrates that the
perceptual loss LV GG helps to improve the performance, preserving the semantics even after
the noise has been removed. Next, to verify the contribution of LCC, we integrate it with
the LV GG. We observe that the LCC which enables the one-to-one mapping between noisy
and denoised images improves the PSNR and SSIM by 0.08dB and 0.004. Finally, when we
integrate the LRecon with the LV GG and the LCC, both PSNR and SSIM increase by 0.15dB
and 0.0063, thus showing the best results in PSNR and SSIM. Through this experiment, we
validate that each of the losses contributes to the performance improvement.
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(a) Input (21.21/0.55) (b) LPF (21.43/0.60) (c) CBM3D (28.55/0.91)

(d) DnCNN (28.64/0.92) (e) FFDNet (24.56/0.83) (f) RedNet-30 (27.46/0.91)

(g) N2N (28.92/0.92) (h) DIP (22.90/0.74) (i) N2V (24.05/0.81)

(j) LIR (19.48/0.82) (k) Ours (27.49/0.90) (l) GT (PSNR/SSIM)

Figure 6: Qualitative results of our method and other baselines on CBSD68 corrupted by
AWGN with a noise level σ = 25.

LV GG LCC LRecon PSNR (dB) SSIM
7 7 7 25.67 0.8204
3 7 7 25.74 0.8272
3 3 7 25.88 0.8312
3 3 3 26.03 0.8375

Table 1: Ablation study. Quantitative results of our method with and without the perceptual
loss LV GG, the cycle consistency loss LCC, and the reconstruction loss LRecon on CBSD68
corrupted by AWGN with a noise level σ = 50. We report the PSNR and SSIM (higher is
better). The best results are marked in bold.
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(a) Input (20.27/0.44) (b) LPF (21.29/0.58) (c) CBM3D (29.99/0.85)

(d) DnCNN (30.32/0.87) (e) FFDNet (26.29/0.81) (f) RedNet-30 (30.50/0.88)

(g) N2N (30.71/0.88) (h) DIP (27.40/0.77) (i) N2V (26.73/0.75)

(j) LIR (26.04/0.83) (k) Ours (28.35/0.83) (l) GT (PSNR/SSIM)

Figure 7: Qualitative results of our method and other baselines on CBSD68 corrupted by
AWGN with a noise level σ = 25.
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(a) LDCT (b) BM3D (c) RED-CNN (d) DIP

(e) LIR (f) Ours (g) NDCT

(h) LDCT (i) BM3D (j) RED-CNN (k) DIP

(l) LIR (m) Ours (n) NDCT

Figure 8: Qualitative results of our method and other baselines on Mayo Clinic Low Dose
CT dataset. As shown in the highlighted red box, the reconstructed images by our method
have few noise and preserve the details of organs. The display window is [160,240] HU.
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(a) Input (b) CBM3D (c) RedNet-30 (d) DIP

(e) LIR (f) Ours (g) GT

(h) Input (i) CBM3D (j) RedNet-30 (k) DIP

(l) LIR (m) Ours (n) GT

Figure 9: Qualitative results of our method and other baselines on real noisy data, SIDD.
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(a) Input (b) CBM3D (c) RedNet-30 (d) DIP

(e) LIR (f) Ours (g) GT

(h) Input (i) CBM3D (j) RedNet-30 (k) DIP

(l) LIR (m) Ours (n) GT

Figure 10: Qualitative results of our method and other baselines on real noisy data, SIDD.
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6 Evaluation on Several Noise Types

6.1 Structured Noise

In this subsection, we show the results on structured noise. To generate the structured noise,
we sample the pixel-wise i.i.d white noise, and convolve it with a 2D Gaussian filter whose a
kernel size is 21×21 and σ is 3 pixel. For the train and evaluation, we follow the same setting
as the setting for synthetic noise removal in the main paper. As shown in Figure 11, our
method is able to remove complex noise compared to BM3D [3] and DIP [12]. Furthermore,
while LIR [4] spoil the lights, our method successfully preserves both the color and lights.
The quantitative results are summarized in Table 2. Our method outperforms the traditional
and unsupervised methods, achieving the second-best performance in terms of PSNR and
SSIM.

(a) Input (b) CBM3D (c) RedNet-30 (d) DIP

(e) LIR (f) Ours (g) GT

Figure 11: Qualitative results of our method and other baselines on CBSD68 corrupted by
structured noise.

6.2 Poisson Noise

In the comparisons of Poisson noisy images, we use Kodak24 as the test dataset. The images
are corrupted by independent Poisson noise from Scikit-image library [13]. We train the
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Traditional Paired setting Unpaired setting
Methods CBM3D [3] RedNet-30 [8] DIP [12] LIR [4] Ours

PSNR (dB) 20.62 28.51 20.70 16.90 25.18
SSIM 0.5650 0.9588 0.7239 0.3738 0.9026

Table 2: The average PSNR and SSIM results of different methods on CBSD68 corrupted by
structured noise. Our results are marked in bold.

models following the settings in the main paper. The visualized results of Poisson noise
removal are given in Figure 12 and 13. Our approach shows impressive noise removal results.
While LIR and DIP fail to remove the Poisson noise, our method successfully eliminates the
noise and preserves the colors. In Table 3, our method achieves the best performance in
PSNR and the second-best performance in terms of SSIM even when it is trained under the
unpaired dataset. It demonstrates that our method has robustness and generalization against
various noise types. Note that we do not change any hyper-parameters when trained under
several types of noise.

(a) Input (b) CBM3D (c) RedNet-30 (d) DIP

(e) LIR (f) Ours (g) GT

Figure 12: Qualitative results of our method and other baselines on Kodak24 corrupted by
Poisson noise.

Traditional Paired setting Unpaired setting
Methods CBM3D [3] RedNet-30 [8] DIP [12] LIR [4] Ours

PSNR (dB) 32.36 29.59 29.59 26.20 34.93
SSIM 0.8694 0.9778 0.8774 0.7741 0.9691

Table 3: The average PSNR and SSIM results of different methods on Kodak24 dataset
corrupted by Poisson noise. Our results are marked in bold.
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(a) Input (b) CBM3D (c) RedNet-30 (d) DIP

(e) LIR (f) Ours (g) GT

Figure 13: Qualitative results of our method and other baselines on Kodak24 corrupted by
Poisson noise.
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