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1 Experiment Settings

1.1 Network Architecture

In our main paper, except for the task with irregular masks (Section 4.4), we evaluate In-N-
Out using a variant of Semantic Regeneration Network (SRN) [8]. We use SRN as our base
network since it demonstrates its performance on diverse content extrapolation tasks. Specif-
ically, it shows its performance even to extrapolation of the human body, texture synthesis,
and morphing. To bring the context better from the visible region, SRN introduces the con-
text normalization module and it was trained with context adversarial loss and relative spatial
variant loss. In our work, we slightly modify SRN to accommodate not only the extrapola-
tion task but various tasks by removing the margin mechanism and let the masked image
go directly into the input of the network; it allows us to use various mask shapes as well as
rectangular masks. The illustration of SRN [8] is shown in Figure | and the illustration of
our variant is shown in Figure 2.
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Figure 1: Semantic Regeneration Network (SRN) [8]. This figure is brought from [8].
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Figure 2: Our variant of SRN. This figure is based on [8].

Method Easy Difficult Extreme
Baseline  33.83 5246 142.40
In-N-Out 3048  45.36 128.10

(a) Outpainting task results for each difficulty, on CelebA-HQ dataset [3]

Method PSNR SSIM FID
SRN [8] 18.22 0.513 -
Baseline (Figure 2) 19.46 0.709 33.30
PSL [4] 18.78 0.716 35.86
In-N-Out 19.52  0.711  30.17

(b) Outpainting task compared to baseline(Figure 2), on beach dataset [6].

Table 1: (a) FID results for each difficulty on outpainting task. If the visible area is less than
20% of a masked image, it is classified as an extreme task. Masked images with less than
40% of the visible area are classified as difficult tasks, and others are classified as easy tasks.
(b) Quantitative results on outpainting task (beach dataset [6]). Our baseline result is added.

1.2 Masks Used in Experiments

For the outpainting task on CelebA-HQ dataset (Section 4.2), we use rectangular masks with
random sizes for the test set. Specifically, we use face locations (used to crop) recursively to
mask the cropped images, which enables various mask sizes and ratios. The detailed process
can be found in our code. The distribution of the test mask area are shown in Figure 3, and
test results according to the difficulty are shown in Table la. If the visible area is less than
20% of a masked image, it is classified as an extreme task. Masked images with less than
40% of the visible area are classified as difficult tasks, and others are classified as easy tasks.

For environment map estimation (Section 4.5), we use a b-spline function for the masks
of train set and test set; it makes natural-looking partial panoramas. The b-spline function is
configured with 4 random points including the center of the image, where each point shows
60-degree FoV. As a result, we could generate images that are similar to input images in
lighthouse [7]. Note that In-N-out is trained on inverse masks, where the visible region and
masked region are swapped, in training steps. The illustration of partial panorama images
are shown in Figure 4, and all illustrations of the train set and test set used in our experiments
are shown in Figure 5.
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Figure 3: Distribution of test mask area in Section 4.2. This represents the ratio of visible
region to the image. We tested our method on masks of various sizes.

Figure 4: Examples of partial panorama images. Up: Input of our work. Down: Input images
used in lighthouse [7]. We use a b-spline function with 4 random points including the center
to make natural-looking partial panoramas.

1.3 Setup for Experiments

For Section 4.1 and 4.2, since training iterations are not specified in the existing paper
(SRN [8]), we chose (pretrain 40k + train 40k) and (45k + 45k) for each experiment as
the loss curves are converged. For Section 4.3, we chose (40k+ 40k), and for Section 4.5,
we chose (45k+ 45k). For Section 4.4, we followed the training procedure specified in
MEDEE [5] and Shift-Net [10] (30 epochs for each baseline) while In-N-Out does outpaint-
ing for half of the iterations (15 epochs: inverse mask, 15 epochs: fine-tune).

For the experiments in Section 4.4, We follow the training and testing split of the dataset,
and we use resized images to 256 x 256.

For the experiment in Section 4.5, we follow the official split of LAVAL Indoor HDR
Dataset [1], and we use resized images to 128 x 256 (respectively height and width). We
use random crop, random flip, and gray-scaled images as data augmentation for our training.
We use 45,000 iterations for the training steps and 45,000 iterations for the fine-tuning with
batch size 4.
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Figure 5: Illustration of used masks.

1.4 Details of iterations

To choose N and K, we selected appropriate iterations to steps when the training curve is
converged. For section 4.1, we found that both baseline and In-N-Out showed similar trends
(as shown in Figure 6) and didn’t improve much after additional 40000 iterations. Also,
for section 4.2, both baseline and In-N-Out showed similar trends after additional 50000
iterations. Additionally, we did experiments with (Section 4.1, N=20000, K=40000), and
(Section Sec. 4.2, N=25000, K=60000) as shown in Figure 7. We have consistently good
results with using these different N and K.

2 Additional Results

We provide test results (PSNR and SSIM) of each iteration in Figure 8 for image inpainting
and image outpainting, similar to Figure 1 in our main paper. More visual comparisons on
image inpainting, image outpainting are given in Figure 9, 10, and 11. Also, we provide
our baseline for outpainting task on beach dataset in Table 1b.
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Figure 6: (b): More iterations from Section 4.1. (d): More iterations from section 4.2. Each
graph shows FID (Fréchet inception distance) [2] during each stage.
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Figure 7: (a)-(b): Section 4.1 with (N = 20000, K = 40000). (c)-(d): Section 4.2 with (N
= 25000, K = 60000). Each graph shows FID (Fréchet inception distance) [2] during each
stage.
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Figure 8: (a)-(b): PSNR and SSIM of each iteration in fine-tuning stage, on inpainting task.
(¢)-(d): PSNR and SSIM of each iteration in fine-tuning stage, on outpainting task. In-N-Out
also shows better performance in terms of SSIM.
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Figure 9: More results on inpainting task (CUB200 dataset [9]).
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Figure 10: More results on outpainting task (CelebA-HQ dataset [3]).
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Input GT PSL In-N-Out

(a) Outpainting task compared to PSL [4].
Figure 11: More results on outpainting task (beach dataset [6]), compared to PSL [4].
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