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Robustness evaluation 

We perturb the key parameters to examine the stability of segmentation results. Two datasets are 
used, a seqFISH dataset of mouse visual cortex (Zhu et al., 2018) containing 1597 cells and 125 
genes, and the benchmark with ground-truth domain segmentation containing 12 Visium datasets 
of human dorsolateral prefrontal cortex (Maynard et al., 2021). We perturb several key parameters 
including the number of hidden units (n_hidden), the number of number of layers of the alpha 
shape based proximity graph (alpha_shape_layer), and the number of spatially variable genes 
used (n_sv_genes). 

On the seqFISH data, we conducted 15 numerical experiments with different combinations of 
parameters and compared the segmentation results among the experiments using four standard 
metrics for clustering, normalized mutual information (NMI), adjusted Rand index (ARI), adjusted 
mutual information (AMI), and Fowlkes-Mallows index (FMI). Results imply that the segmentation 
results are highly similar across the numerical experiments (SFigure 1). 

On the Visium benchmark datasets, we tested 6 parameter combinations and evaluated the 
segmentation performance by comparing to the ground-truth using the aforementioned metrics. 
It was found that our method consistently performs well with all 6 parameter combinations 
(SFigure 2). 

 



 
SFigure 1 Robustness of Scan-IT domain segmentation of the seqFISH dataset of mouse visual cortex.  



 
SFigure 2 Robustness of Scan-IT domain segmentation of the benchmark Visium datasets of human dorsolateral 
prefrontal cortex. To account for randomness, 10 independent runs were carried out for each experiment setup and the 
results of the parallel runs are shown as box plots. 

  



Results of evaluated methods on the Visium benchmark dataset 

 

Ground truth segmentation (Maynard et al., 2021) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

SFigure 3 Ground truth domain segmentation of 12 Visium samples of human dorsolateral prefrontal 
cortex. 



SpatialLIBD best parameter combination (Maynard et al., 2021) 

 
SFigure 4 SpatialLIBD segmentation result with the best parameter combinations among the 20 combinations 
explored in the original publication. 

  



SmfishHmrf segmentation results (Dries et al., 2021; Zhu et al., 2018) 

 
SFigure 5 SmfishHmrf segmentation results with the best beta (the key parameter of the model) value 40 among the 
five tested values, 10, 20, 30, 40, and 50. 

  



StLearn segmentation results (Pham et al., 2020) 

 
SFigure 6 StLearn segmentation results where the result with the median performance among ten independent runs 
is shown for each of the twelve samples. 

  



BayesSpace segmentation results (Zhao et al., n.d.) 

 
SFigure 7 BayesSpace segmentation results obtained by using the same parameters in the package tutorial. 

  



Scan-IT (SVgenes) segmentation results 

 
SFigure 8 Scan-IT segmentation results using the spatially variable genes determined unbiasedly. The result with the 
median performance among ten independent runs is shown for each sample. 

  



Scan-IT (markers) segmentation results 

 
SFigure 9 Scan-IT segmentation results using the spatial marker genes given in the original publication of the 
benchmark datasets. The result with the median performance among ten independent runs is shown for each 
sample.  
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