
NAVANEET, KOOHPAYEGANI, TEJANKAR, PIRSIAVASH: REGRESSED SSL DISTILLATION1

SimReg: Regression as a Simple Yet
Effective Tool for Self-supervised
Knowledge Distillation - Supplementary
Material

K L Navaneet1

navanek1@umbc.edu

Soroush Abbasi Koohpayegani1

soroush@umbc.edu

Ajinkya Tejankar1

at6@umbc.edu

Hamed Pirsiavash1, 2

hpirsiav@ucdavis.edu

1 University of Maryland, Baltimore
County
Maryland, USA

2 University of California, Davis
California, USA

In this supplementary material, we present additional experimental results (Sec. 1) and
details on experiment settings and implementation (Sec. 2). Additional results include those
on the role of MLP head during training (Sec. 1.1) and self-distillation (Sec. 1.2). We pub-
licly release the code1.

1 Additional Experimental Results

1.1 Role of MLP Head

In tables 1 and 2 of main we analyze how the depth of MLP head during training and in-
ference affects classification performance. We present additional results here in table 1 with
different teacher and student network settings. The student networks are trained with differ-
ent prediction head configurations. The evaluation is always performed using features from
backbone network for a fair comparison. In addition to the self-supervised (SSL) teacher
models used in the main paper, we consider a supervised teacher network. The teacher is
trained with cross-entropy loss using ground truth labels on the ImageNet dataset. As in
SSL teachers, we use only the backbone network for distillation from a supervised teacher.
Note that the supervised labels are absent during student training. In both the supervised and
self-supervised settings, the student with 4 layer MLP head consistently outperforms others
on all metrics. Compared to Linear head, 4L-MLP achieves 5 (MoCo-v2, ResNet-18),
11.2 (MoCo-v2, MobileNet-v2) and 6 (Supervised, MobileNet-v2) percentage points im-
provement on linear evaluation.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Code is available at https://github.com/UCDvision/simreg

https://github.com/UCDvision/simreg

2NAVANEET, KOOHPAYEGANI, TEJANKAR, PIRSIAVASH: REGRESSED SSL DISTILLATION

Teacher Student Arch Prediction 1-NN 20-NN Linear
(Inference) Head (Train)

MoCo-v2 ResNet-50 ResNet-18
Backbone

4L-MLP 54.8 59.9 65.1
2L-MLP 52.7 58.5 63.6
Linear 48.8 54.3 60.1

MoCo-v2 ResNet-50 MobileNet-v2
Backbone

4L-MLP 55.46 59.73 69.1
2L-MLP 54.4 59.6 68.5
Linear 48.7 54.2 57.9

Supervised ResNet-50 MobileNet-v2
Backbone

4L-MLP 63.77 67.87 73.5
2L-MLP 64.7 69.3 73.5
Linear 55.4 62.0 67.5

Table 1: Effect of MLP Heads on ImageNet classification performance. As in table 1
of main paper, we analyze the role of the prediction head used during training by varying
the number of MLP layers. However, the evaluation here is performed using the features
from the backbone network and the prediction head plays no role during inference. A linear
prediction head corresponds to the architecture used in earlier works [5]. We observe that a
deeper prediction module during training results in substantial boosts in performance. This
observation is consistent across different teacher networks (both SSl and supervised) and
student architectures. Compared to Linear head, 4L-MLP achieves 5(MoCo-v2, ResNet-
18), 11.2(MoCo-v2, MobileNet-v2) and 6(Supervised, MobileNet-v2) percentage points
improvement on linear evaluation.

1.2 Self-distillation

In all the previous experiments, a larger teacher network is distilled to a shallower student.
In self-distillation, we consider the same backbone architecture for both teacher and stu-
dent. Similar to other experiments, we use a prediction head (linear or MLP) atop student
backbone during distillation and remove it during evaluation. As we observe in table 2, the
student with a 4 layer MLP head outperforms the teacher in both ImageNet classification
and transfer tasks. The improvement in transfer performance is particularly significant (+4
percentage points) and might be attributed to the use of prediction head and weaker augmen-
tations during distillation.

1.3 Comparison with CompRess without MLP

In table 1 of the main paper, we observed that the use of MLP head during distillation benefits
both the CompRess variants on the ImageNet classification task. Here, we show that similar
boost in CompRess performance can be achieved on transfer tasks when distilled with MLP
head. We use the officially provided pretrained models for vanilla CompRess-2q ResNet-18
and MobileNet-v2 architectures for our comparison and perform transfer analysis similar
to that in table 5 of the main paper. Results in table 3 demonstrate that performance of
vanilla CompRess models are significantly worse compared to both CompRess with MLP
and proposed regression based distillation. Note that the MLP heads are not used during
inference for fair comparison.

Citation
Citation
{Koohpayegani, Tejankar, and Pirsiavash} 2020

NAVANEET, KOOHPAYEGANI, TEJANKAR, PIRSIAVASH: REGRESSED SSL DISTILLATION3

Student Arch Prediction Head ImageNet Transfer
(Inference) (Train) 1-NN 20-NN Linear Linear

MoCo-v2 Teacher - 57.3 60.9 70.8 74.3

ResNet-50 4L-MLP 58.2 62.2 72.0 78.3
ResNet-50 Linear 56.4 60.6 69.7 71.8

Table 2: ImageNet Classification and transfer results for self-distillation with predic-
tion head. In self-distillation, the teacher and student backbone architectures are the same
(ResNet-50). We use a MoCo-v2 pretrained teacher and train student networks with linear
and 4 layer MLP heads. All evaluations are performed using backbone features. The stu-
dent with MLP prediction head outperforms the teacher on both ImageNet classification and
transfer tasks. A boost of 4 percentage points on average transfer accuracy suggests that the
use of prediction head and weaker augmentations during distillation are beneficial in learning
a good generalizable model.

Arch MobileNet-v2 ResNet-18
Method CompRess-2q CompRess-2q SimReg CompRess-2q CompRess-2q SimReg

plain -4L-MLP -4L-MLP plain -4L-MLP -4L-MLP

Food 61.4 71.4 73.1 57.6 61.7 65.4
CIFAR10 85.3 90.3 91.2 82.5 87.3 88.6

CIFAR100 65.1 73.9 76.1 62.5 68.4 70.2
SUN 53.9 58.0 59.4 52.2 54.3 57.1
Cars 35.0 60.3 62.4 30.0 37.2 42.3

Aircraft 42.1 57.7 58.7 38.0 42.3 45.8
DTD 70.4 71.7 74.5 67.4 69.3 70.9
Pets 82.9 86.7 85.6 81.6 84.0 83.9

Caltech 85.6 91.1 91.7 85.3 87.3 89.2
Flowers 87.6 94.3 95.1 83.0 86.4 90.9

Table 3: Transfer learning performance of CompRess with and without MLP. Since the
teacher networks are self-supervised, generalization of learnt features to other datasets is im-
portant. Similar to ImageNet classification, CompRess with MLP significantly outperforms
vanilla CompRess (CompRess-2q plain) on all datasets and metrics. MLP heads, if present,
are only used during distillation and are not part of inference networks.

4NAVANEET, KOOHPAYEGANI, TEJANKAR, PIRSIAVASH: REGRESSED SSL DISTILLATION

Eval Layer Conv-1 ResBlk-1 ResBlk-2 ResBlk-3 ResBlk-4 2L-MLP 4L-MLP
Student 1-NN 20-NN 1-NN 20-NN 1-NN 20-NN 1-NN 20-NN 1-NN 20-NN 1-NN 20-NN 1-NN 20-NN

ResNet-18 6.2 7.2 16.0 18.0 21.8 24.3 33.4 37.4 55.3 60.2 56.0 60.9 53.4 57.6

Table 4: ImageNet classification using intermediate features. We consider a single student
network with 4 layer MLP head and perform k-NN evaluation using features from various
intermediate layer features from the network. For fair comparison, we match the dimensions
from the intermediate convolutional features (Conv-1 and residual block features) to that
of the final backbone feature (ResBlk-4) by reducing their spatial dimensions. As expected,
performance improves as we use features from deeper layers of the CNN. This changes in the
MLP head where a drop in accuracy at the very last layer of the prediction head is observed.

1.4 Results with Intermediate Layers of CNN
In our results in table 2 of main paper, we analyze how the classification performance
changes as we consider features from the earlier layers of the prediction head. Here, we
analyize results from various intermediate layers including those from the CNN backbone.
We train a single ResNet-18 student from a MoCo-v2 ResNet-50 teacher and perform k-NN
evaluation using features from different layers. In table 4, Conv-1 refers to the output of the
first convolutional layer while ResBlk-j refers to the output from the jth residual block. The
CNN features for evaluation are obtained by reducing their spatial dimension and then vec-
torizing. The spatial dimensions are reduced so that the feature lengths are roughly the same
throughout the backbone for fair comparison. We observe that the performance increases as
we go deeper into the backbone. The best performance is achieved at the intermediate layer
of prediction head and there is a small drop in accuracy at the final prediction layer.

2 Implementation Details

2.1 Teacher Networks
We use teacher networks trained using four different self-supervised representation learning
approaches - MoCo-v2 [3], BYOL [4], SwAV [1] and SimCLR [2]. We use the official
and publicly available pre-trained weights for these networks with ResNet-50x4 architecture
pretrained model for SimCLR teacher and ResNet-50 models for the remaining methods.
MoCo-v2 and SwAV have been trained for 800 epochs and BYOL and SimCLR for 1000
epochs. For distillation with BYOL, SwAV and SimCLR teachers we use cached features
from the teacher. The cached features are obtained by passing the entire training data through
the teacher network once and storing the features. Random image augmentation as would be
used in non-cached version is employed to generate the inputs for caching.

2.2 Image Augmentations
We use two strategies for augmenting the input image during distillation - ‘weak’ and ‘strong’.
‘Strong’ augmentation refers to the setting used in MoCo-v2 [3]. In both augmentation set-
tings, we apply a series of stochastic transformations on the input image. A random resized
crop (scale is in range [0.2, 1.]), random horizontal flip with probability 0.5 and normal-
ization to channel-wise zero mean and unit variance are common for both augmentation
methods. In addition to these transformations, ‘strong’ augmentations use random color jit-
tering (strength of 0.4 for brightness, contrast and saturation and 0.1 for hue) with probability

Citation
Citation
{Chen, Fan, Girshick, and He} 2020{}

Citation
Citation
{Grill, Strub, Altch{é}, Tallec, Richemond, Buchatskaya, Doersch, Pires, Guo, Azar, etprotect unhbox voidb@x protect penalty @M {}al.} 2020

Citation
Citation
{Caron, Bojanowski, Joulin, and Douze} 2018

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020{}

Citation
Citation
{Chen, Fan, Girshick, and He} 2020{}

NAVANEET, KOOHPAYEGANI, TEJANKAR, PIRSIAVASH: REGRESSED SSL DISTILLATION5

0.8, random grayscaling with probability 0.2 and Gaussian blur (standard deviation chosen
uniformly from [0, 1]).

2.3 Optimizer

In all our distillation experiments, we use SGD optimizer with cosine scheduling of learning
rate, momentum of 0.9 and weight decay of 0.0001. Initial learning rate is set to 0.05. The
networks are trained for 130 epochs with a batch size of 256 using PyTorch [7] framework.

2.4 Evaluation Metrics

We utilize k-NN and linear evaluation to evaluate classification performance on ImageNet
and linear evaluation to evaluate transfer performance. For ImageNet linear evaluation, the
inputs to the linear layer are normalized to unit l2 norm and then each dimension is shifted
and scaled to have unit mean and zero variance [5]. The layer is trained for 40 epochs using
SGD with initial learning rate of 0.01 and momentum of 0.9. The learning rate is scaled by
0.1 at epochs 15 and 30. For evaluation of transfer performance, we use the optimizer settings
from [6]. The shorter side of the input image is resized to 256 and centre crop with length 224
is used. The input is channel-wise normalized using the statistics from ImageNet dataset. We
use LBFGS optimizer with parameters max_iter=20 and history_size=10. Learning rate and
weight decay are optimized by performing a grid search using validation set. The best model
is obtained by retraining with optimal parameters on the combined train and validation set.
10 different log spaced values in [-3, 0] are used for learning rate while 9 log values in [-10,
-2] are used for weight decay.

2.5 MLP Architecture

For the proposed prediction head, we experiment with linear, 2 and 4 layer MLPs. Each
MLP layer is composed of a linear projection followed by 1D batch normalization and ReLU
activation. Let the dimension of the student backbone output be m and that of teacher d. For
linear evaluation, a single layer with input and output dimensions of (m,d) is used. For
a 2 layer MLP, following [4], we use the dimensions (m,2m,d). We extend this to a 4
layer MLP with the following intermediate feature dimensions: (m,2m,m,2m,d). Batch
normalization and ReLU activation are not employed at the end of layer 2 for 4 layer MLP
head (equivalent to stacking two 2-layer MLP heads). For our ablation on the role of MLP
head during inference (table 2 in main paper), we compare the performance of our method
at different layers of the MLP head from a single trained network. For fair comparison,
we require all the intermediate dimensions to be same as that of the output. Thus, for this
experiment alone, we use an MLP such that the feature dimensions are (m,d,d,d,d). The
output dimension (m) for ResNet-18, ResNet-50 and MobileNet-v2 are 512, 2048 and 1280
respectively. The teacher output dimensions are 2048 and 8192 respectively for ResNet-
50 and ResNet-50x4 architectures. From table 2 (network with MLP feature dimensions
(512, 2048, 2048, 2048, 2048)) and table 4 (network with MLP feature dimensions (512,
1024, 512, 1024, 2048)) results, we observe that higher MLP feature dimensions might help
further boost performance (65.7 vs 65.1 on ImageNet linear). More ablations on this are
necessary to optimize the MLP architecture.

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

Citation
Citation
{Koohpayegani, Tejankar, and Pirsiavash} 2020

Citation
Citation
{Koohpayegani, Tejankar, and Pirsiavash} 2021

Citation
Citation
{Grill, Strub, Altch{é}, Tallec, Richemond, Buchatskaya, Doersch, Pires, Guo, Azar, etprotect unhbox voidb@x protect penalty @M {}al.} 2020

6NAVANEET, KOOHPAYEGANI, TEJANKAR, PIRSIAVASH: REGRESSED SSL DISTILLATION

References
[1] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering

for unsupervised learning of visual features. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 132–149, 2018.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International conference
on machine learning, pages 1597–1607. PMLR, 2020.

[3] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with
momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[4] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mo-
hammad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach to self-
supervised learning. NeurIPS, 2020.

[5] Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and Hamed Pirsiavash. Compress:
Self-supervised learning by compressing representations. NeurIPS, 2020.

[6] Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and Hamed Pirsiavash. Mean shift
for self-supervised learning. arXiv preprint arXiv:2105.07269, 2021.

[7] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024–8035. 2019.

