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1 Overview
In this supplementary, we provide more details and results that are organized as follows:

• Section 2 provides more details and visualizations on our 2D segmentation ground
truth generation, as well as comparison between training our model on the provided
SUN RGB-D 2D segmentation ground truth verses the 2D segmentation ground truth
generated from 3D box annotations.

• Section 3 explains our implementation and training details in more depth. Further, we
present training and inference times for our pipeline.

• Section 4 presents more experiments building off of the 2D→3D→2D→3D frame-
work, but with a stronger initial 2D segmentation network.

• Section 5 contains per-category results for 3D detection.

• Section 6 contains additional visualizations.

2 2D Ground Truth

2.1 2D Ground Truth Generation From 3D Box Annotations
To generate 2D semantic segmentation ground truth to train our 2D modules, we elect to
generate them from the 3D object detection labels instead of using the 2D segmentation
labels provided with the SUN RGB-D dataset. This choice enables our method to impose
no additional annotation burdens and allows MTC-RCNN to be used in scenarios where 2D
segmentation labels are unavailable.

To obtain the 2D labels, we expand the 2D depth map into a 3D point cloud using the
camera intrinsics. Then, using the 3D box labels, if a point is within a single 3D box, the
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2D Labels Used 1st Stage 2D mIoU 2nd Stage 2D mIoU 3D mAP
Generated from 3D boxes 46.37 52.65 31.62

Human Annotations 49.61 54.22 31.17

Table 1: Comparison between using generated 2D segmentation labels vs human-annotated
2D segmentation labels from SUN RGB-D

Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet 2D mIoU
62.93 72.5 38.62 55.39 33.39 47.91 28.28 58.00 38.10 71.06 50.62

Table 2: 2D mIoU between generated 2D segmentation labels and human-annotated 2D
segmentation labels.

point (and its corresponding 2D pixel) is marked as the class of the 3D box it is in. If a
point is not within any box, it is labeled as background. We note that some 3D points are in
multiple boxes and that some 2D pixels do not have a corresponding depth value. For these
latter two cases, the 2D pixel is marked to be ignored during training.

We present some example visualizations of the 2D labels in Figure 1. Background is
shown in black and ignored pixels are shown in white. We see that for some scenes (the first
three rows), the segmentation labels are quite accurate, with objects clearly labeled. How-
ever, in the last three rows, we see that the generated ground truth is not always perfect. In
row 4, the floor is very reflective, causing many portions of the floor to not have correspond-
ing depth values. In row 5, the chair and table 3D bounding boxes are greatly overlapped,
causing many areas to be ignored during training. In the final row we see both problems
together - much of the scene is marked white. Despite these incomplete 2D segmentation
labels, we find that this is enough to well-supervise MTC-RCNN, which is able to generate
high-quality 2D segmentation predictions to further benefit 3D object detection.

2.2 Additional Experiments Using SUN RGB-D 2D
Human-Annotated Segmentation Ground Truth

The SUN RGB-D dataset additionally provides 2D segmentation ground truth annotations.
Although our model does not require usage of these additional annotations for training, we
present here the results of training our 2D→3D→2D→3D pipeline using these labels to
compare with training on our generated 2D ground truth. The results are shown in Table 1.
Please note that the 2D mIoUs are not directly comparable, as the segmentation predictions
trained on different 2D labels are evaluated against their respective 2D label sources - the first
row 2D predictions are evaluated with respect to the 2D labels generated from 3D boxes, and
the second row predictions are evaluated against the SUN RGB-D 2D human annotations.
However, the 3D mAP is directly comparable.

We notice that regardless of which type of 2D labels are used, our pipeline demonstrates a
huge boost in 2D mIoU performance: +6.28 mIoU for row 1, +4.61 mIoU for row, showing
that the 3D to 2D fusion is greatly beneficial.

However, curiously, we notice that the 3D mAP performance is worse when we use SUN
RGB-D’s human-annotated 2D segmentation labels. To investigate why this may be the
case, we computed the 2D mIoU between 2D segmentation labels generated from 3D box
annotations vs the 2D human-annotated segmentation labels as shown in Table 2. Note that
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we only computed mIoU at 2D locations where there was a valid depth value and the human
2D segmentation labels are not marked as "ignore." Surprisingly, we see that the mIoU is
very low - for some classes, like nighstand, the mIoU is as low as 28.28. Looking at the
visualizations in Figure 2, we find that this is due to a multitude of factors. First, we see that
similar classes (table, desk, and nightstand) are often mislabeled as each other. In the first
row, the object to the right of the bed is labeled as a table in the provided 2D segmentation
labels but is labeled as a night stand in the 3D box annotations - this happens in row 3 as
well. Another trend seems to be missing labels in either 2D or 3D - in the first second row,
a chair is labeled in 2D but not labeled in 3D. Conversely, several dressers in the third row
are labeled in 3D but not in 2D. From these visualizations as well as our results, we find
that our method 1) is able to cope well with missing labels, 2) works better when 3D and 2D
annotations are consistent, even if the 2D annotations are more sparse like they are for the 2D
labels generated from 3D box annotations, 3) but still demonstrates significant performance
improvement in both 2D and 3D even when 2D and 3D labels are not perfectly matched. As
such, we further verify that our method is robust and able to work well without additional
2D segmentation annotations.

3 Implementation Details and Runtime

3.1 Implementation Details

Data Setup and Augmentation. Following the commonly used data processing strategy
from [11], 20,000 points from each point cloud is sampled to be used as input to the net-
work. Each point has XYZ coordinates as well as a height value (distance from the ground).
The ground height is estimated from the 1% lowest percentile of heights of points. During
training, each point cloud is augmented as follows: random flip, random rotation between
[-30, 30] degrees, and random scaling between [.85, 1.15]. For the 2D image, the aug-
mentations are as follows: random resizing of image with smaller side between [480, 600],
photometric distortion, ImageNet normalization of RGB channels, and depth channel nor-
malized to between 0 and 1. Consistent with previous works, no test-time augmentation is
done. To account for the randomness in sampling 20,000 points, each model is evaluated 5
times on different seeds, with the results averaged.
Training Details. For training, We use the AdamW optimizer (β1=0.9, β2 = 0.999) with 240
epochs. The initial learning rate is 5e-4 with a batch size of 8, and is decayed 10x at 160 and
210 epochs. Weight decay is set as 0.01 for 3D components and 1e-4 for 2D components.
Gradient normalized clipping is used, with maximum norm of 10.

We use dropout [13] at multiple places in our pipeline. Dropout of rate 0.1 is used
before the final classification heads in the 2D model as well as before each box parameter
prediction head in the second stage 3D model. Further, dropout of rate 0.5 is used when
fusing 2D segmentation predictions into 3D modules, at both 2D→3D junctures in the full
2D→3D→2D→3D pipeline. Notably, instead of randomly dropping out individual scalars,
we randomly dropout 2D segmentation predictions for entire samples. More specifically, for
each batch, the 2D segmentation predictions for half of the samples are not fused into 3D.
We find that including this dropout allows 3D modules to not over-rely on 2D segmentation
predictions, which allow them to be more robust to mistakes in 2D segmentation.
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Method Throughput (ms/frame) 3D AP@0.25 3D AP@0.50 3D mAP (AP.25:.95)
VoteNet [11] 48 ms 58.7 35.1 23.8
H3DNet [15] 185 ms 61.1 39.0 -

Group-Free [5] 90 ms 63.0 45.2 -
Ours (3D→3D) 132 ms 60.2 46.0 29.8

Ours (3D→2D→3D) 156 ms 64.6 49.0 31.8
Ours (2D→3D→2D→3D) 167 ms 65.0 48.4 32.0

Table 3: Inference time of different methods.

3.2 Runtime Experiments

The inference time of our method in comparison with other methods is shown in Table 3. We
acquiesce that although our method demonstrates better performance than previous works,
it is slower than some. However, we believe our method cannot simply be considered a 3D
object detection pipeline as it offers additional significant advantages.

First, our (3D→2D→3D) and (2D→3D→2D→3D) frameworks produce high-quality
2D segmentation outputs which are significantly better than single-modality 2D segmenta-
tion baselines. 2D segmentation detections are often a critical intermediate output for robotic
manipulation or autonomous driving. For instance, segmentation is commonly used for free
space estimation [9, 14], and some methods propose learning control policies using semantic
segmentation predictions as an intermediary representation [3, 7, 8].

Second, what we propose in this work is not just a specific architecture but rather a
flexible framework for cascaded fusion of 2D and 3D modalities. For instance, the first stage
3D network does not need to be VoteNet, nor does the second stage 3D network need to be
fashioned from LiDAR-RCNN [4]. Any initial 3D network can general proposals, and any
3D refinement head will work with our proposed idea. In fact, looking at Table 3, we find that
the majority of the runtime of our method is actually due to the choice of LiDAR-RCNN as
the second stage 3D network (48ms to 132ms), while the addition of the 2D modules as well
as the proposed multi-modal fusion is actually very lightweight. ResNet18 DeepLabV3+ just
takes 18ms per frame on its own, which means the multi-modal fusion in (3D→2D→3D)
just takes 156 ms− (132 ms+ 18 ms) = 6 ms. Pipelines for autonomous driving or robotic
control with existing 2D and 3D modules can flexibly fit their networks into our pipeline for
multi-modal improvement of their predictions. We show that improving the 2D network can
yield benefits in both 2D and 3D predictions in Section 4.

Third, the recursive nature of our method, as well as the usage of dropout at multiple
stages in our pipeline allows our method to be repeated fewer or more times as desired. For
instance, one could decide to just take the first stage 3D predictions or the second stage 2D
predictions as the final output and save runtime on lower resource environments. On the
other hand, on stronger hardware, our pipeline can be recursive applied for further boost in
performance. This flexibility allows our pipeline to be applied to a larger range of scenarios.

Finally, the runtime of our method can further be improved through improvements and
optimization for edge devices. First, we find that simply replacing the multi-class NMS
of the proposals to class-agnostic NMS can improve the runtime of our full pipeline from
167 ms to 125 ms while the 3D mAP performance is largely maintained (31.62 → 31.52,
averaged over evaluation runs). The performance can be further optimized on edge devices
using TensorRT, a deep-learning inference optimizer.
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First 2D Backbone Method 2D mIoU 3D mAP
- Ours (3D→2D→3D) 51.03 31.46

ResNet18

Initial 2D-only predictions 46.37 -
Ours (2D→3D→2D→3D) 52.65 31.62

Ours (2D→3D→2D→3D→2D→3D) 52.93 31.79
Ours (2D→3D→2D→3D→2D→3D→2D→3D) 52.91 31.80

ResNet50

Initial 2D-only predictions 50.22 -
Ours (2D→3D→2D→3D) 53.38 32.05

Ours (2D→3D→2D→3D→2D→3D) 53.49 32.23
Ours (2D→3D→2D→3D→2D→3D→2D→3D) 53.34 32.19

ResNet101

Initial 2D-only predictions 52.92 -
Ours (2D→3D→2D→3D) 53.60 32.39

Ours (2D→3D→2D→3D→2D→3D) 53.53 32.45
Ours (2D→3D→2D→3D→2D→3D→2D→3D) 53.38 32.39

Table 4: Effects of incorporating PointPainting into our framework with larger initial 2D
backbones during inference.

4 2D→3D→2D→3D with Larger Initial 2D Backbone

In Table 4, we experiment with different backbones for the initial 2D network (that is fused
into the 3D proposal generation stage) during inference. During training, 2D predictions
from a baseline 2D-only ResNet18 DeepLabV3+ is used. We observe that our pipeline is
able to improve upon 2D predictions of even a very large backbone like ResNet101 - the
initial 2D predictions achieve 52.92 2D mIoU, and the second 2D module is able to improve
it significantly to 53.60, despite the second 2D module having a much smaller ResNet18
backbone. Further, we also see improvements in both 2D mIoU and 3D mAP with larger
initial 2D backbone. We also experiment with recursively applying our pipeline one and two
additional times (3rd and 4th row in each section) and note that although the first recursive
application often yields benefits, the gains saturate or decline with the second additional
application.

5 More Quantitative Results

In Tables 5, 6, 7, 8, we report per-category evaluation results. The commonly used AP@0.25
metric is quite saturated by recent works, so we also report AP@0.50, AP@0.75, and mAP
(AP.25:.95). mAP is a tougher and more stable metric incorporating many IoU thresholds. We
observe that our 3D-only (3D→3D) model is already a very strong state-of-the-art method.
Further, including additional 2D segmentation between the two 3D modules boosts perfor-
mance by a significant margin. Then, also including a 2D network before the first 3D pro-
posal generation stage further boosts performance (AP@0.25, AP@0.75, mAP). Finally,
recursively applying our pipeline once more demonstrates a small but consistent additional
boost in all metrics.
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Methods Input Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet AP@0.25
F-PointNet [10] point+RGB 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0

VoteNet [11] point 74.4 73.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7
VoteNet [11]∗ point 74.1 85.8 34.3 75.6 26.0 28.3 60.6 66.7 50.1 89.6 58.7

ImVoteNet [12] point+RGB 75.9 87.6 41.3 76.7 28.7 41.4 69.9 70.7 51.1 90.5 63.4
H3DNet [15]† point 73.8 85.6 31.0 76.7 29.6 33.4 65.5 66.5 50.8 88.2 60.1

BRNet [1] point 76.2 86.9 29.7 77.4 29.6 35.9 65.9 66.4 51.8 91.3 61.1
Group-Free [5] point 80.0 87.8 32.5 79.4 32.6 37.0 66.7 70.0 53.8 91.1 63.0

Ours (3D→3D) point 76.7 83.9 25.8 77.5 25.5 31.1 67.0 69.2 54.9 90.9 60.2
Ours (3D→2D→3D) point+RGB 79.7 85.9 43.9 78.3 28.3 45.2 69.2 68.4 55.3 92.2 64.6

Ours (2D→3D→2D→3D) point+RGB 77.0 86.2 47.5 79.5 29.2 47.5 68.2 67.6 54.5 92.6 65.0
Ours (2D→3D) ×3 point+RGB 78.8 86.3 46.3 79.7 29.7 47.2 69.5 68.2 54.4 92.8 65.3

Table 5: 3D object detection results on SUN RGB-D. We present per-category average
precision (AP) at the 0.25 IoU threshold. ∗We report 5-times evaluation results on the check-
point from MMdetection3D[2] which has higher results than the official paper. † H3DNet
uses 4 PointNet++ backbones.

Methods Input Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet AP@0.50
VoteNet [11] point 49.9 47.3 4.6 54.1 5.2 13.6 35.0 41.4 19.7 58.6 32.9
VoteNet [11]∗ point 43.0 54.2 7.3 54.7 6.0 13.1 39.4 49.9 21.6 62.1 35.1
H3DNet [15]† point 47.6 52.9 8.6 60.1 8.4 20.6 45.6 50.4 27.1 69.1 39.0

BRNet [1] point 55.5 63.8 9.3 61.6 10.0 27.3 53.2 56.7 28.6 70.9 43.7
SparsePoint [6] point 60.9 63.2 13.8 61.2 14.2 23.7 49.1 57.7 33.2 65.4 44.2
Group-Free [5] point 64.0 67.1 12.4 62.6 14.5 21.9 49.8 58.2 29.2 72.2 45.2

Ours (3D→3D) point 63.5 64.8 8.9 64.3 10.8 22.7 56.9 58.6 32.0 79.7 46.0
Ours (3D→2D→3D) point+RGB 64.9 67.0 20.0 65.8 11.4 33.9 57.6 58.1 34.2 76.9 49.0

Ours (2D→3D→2D→3D) point+RGB 54.6 66.2 23.2 67.0 12.8 32.6 54.6 58.6 34.3 80.2 48.4
Ours (2D→3D) ×3 point+RGB 56.1 67.2 22.5 67.3 12.7 32.3 55.5 59.1 34.4 78.9 48.6

Table 6: 3D object detection results on SUN RGB-D. We present per-category average
precision (AP) at the 0.50 IoU threshold. ∗We report 5-times evaluation results on the check-
point from MMdetection3D[2] which has higher results than the official paper. † H3DNet
uses 4 PointNet++ backbones.

Methods Input Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet AP@0.75
VoteNet [11]∗ point 0.8 4.0 0.0 2.5 0.0 0.1 0.2 4.3 0.5 2.6 1.5

BRNet [1] point - - - - - - - - - - 5.3
Ours (3D→3D) point 5.1 18.2 0.1 8.1 0.4 1.4 2.0 15.3 2.3 10.8 6.4

Ours (3D→2D→3D) point+RGB 4.1 25.1 0.4 8.8 0.5 3.5 3.7 16.8 2.5 12.0 7.7
Ours (2D→3D→2D→3D) point+RGB 4.0 22.8 0.3 9.1 1.1 2.6 4.5 17.2 3.8 16.6 8.2

Ours (2D→3D) ×3 point+RGB 4.6 23.0 0.5 9.2 1.1 2.9 4.7 18.2 3.8 16.4 8.4

Table 7: 3D object detection results on SUN RGB-D. We present per-category average
precision (AP) at the 0.75 IoU threshold. ∗We report 5-times evaluation results on the check-
point from MMdetection3D[2] which has higher results than the official paper.

Methods Input Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet mAP (AP.25:.95)
VoteNet [11]∗ point 27.0 36.7 9.4 34.2 6.7 10.0 24.9 32.0 17.1 40.3 23.8
Ours (3D→3D) point 38.3 44.0 8.8 40.4 8.5 13.7 33.2 39.1 22.8 49.3 29.8

Ours (3D→2D→3D) point+RGB 40.0 46.4 14.5 41.1 9.3 21.4 34.5 38.7 23.4 49.1 31.8
Ours (2D→3D→2D→3D) point+RGB 36.5 45.7 16.9 41.8 10.1 21.1 33.7 38.8 23.8 51.1 32.0

Ours (2D→3D) ×3 point+RGB 37.6 46.1 16.6 42.0 10.1 20.9 34.7 39.3 23.9 50.8 32.2

Table 8: 3D object detection results on SUN RGB-D. We present per-category mean av-
erage precision (mAP), averaged over APs from IoUs from 0.25 to 0.95 at 0.05 intervals.
∗We report 5-times evaluation results on the checkpoint from MMdetection3D[2] which has
higher results than the official paper.

Citation
Citation
{Qi, Liu, Wu, Su, and Guibas} 2018

Citation
Citation
{Qi, Litany, He, and Guibas} 2019

Citation
Citation
{Qi, Litany, He, and Guibas} 2019

Citation
Citation
{Qi, Chen, Litany, and Guibas} 2020

Citation
Citation
{Zhang, Sun, Yang, and Huang} 2020

Citation
Citation
{Cheng, Sheng, Shi, Yang, and Xu} 2021

Citation
Citation
{Liu, Zhang, Cao, Hu, and Tong} 2021{}

Citation
Citation
{Contributors} 2020

Citation
Citation
{Qi, Litany, He, and Guibas} 2019

Citation
Citation
{Qi, Litany, He, and Guibas} 2019

Citation
Citation
{Zhang, Sun, Yang, and Huang} 2020

Citation
Citation
{Cheng, Sheng, Shi, Yang, and Xu} 2021

Citation
Citation
{Liu, Xu, Yang, Liu, and Cai} 2021{}

Citation
Citation
{Liu, Zhang, Cao, Hu, and Tong} 2021{}

Citation
Citation
{Contributors} 2020

Citation
Citation
{Qi, Litany, He, and Guibas} 2019

Citation
Citation
{Cheng, Sheng, Shi, Yang, and Xu} 2021

Citation
Citation
{Contributors} 2020

Citation
Citation
{Qi, Litany, He, and Guibas} 2019

Citation
Citation
{Contributors} 2020



J. PARK ET AL.: MULTI-MODALITY TASK CASCADE 7

6 More Qualitative Results
We show additional 3D detection results from our pipeline in Figure 3. We find that our
method is able to produce highly accurate predictions, often capturing objects not labeled in
ground truth.
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Figure 1: Visualization of generated 2D segmentation ground truth.
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Human-Annotated 2D Seg. Labels Generated from 3D Box Annos.Image

Figure 2: Visualization of 2D Segmentation Labels.
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Image GT Ours

Figure 3: Additional qualitative results from our model.
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