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1 Network Architecture
In our depth estimation network, we follow [6] to use two independent ResNet-18 [3] with a
late fusion scheme to build the encoder. The extracted features are fused by concatenation.
In addition, we also use UpProj [5] to build the decoder. A task identity layer t is manually
appended in the latent space before fed into the decoder. Furthermore, we apply softmax and
sigmoid as the output layer activation function according to the different task identity t.

In Table 1, we list the network architecture of the feature extractor Fi and Fd in our
proposed FusionYOLO, which is based on the Darknet-53 [7]. We follow the three different
detection scales of YOLOv3 [7] to fuse the depth features. Specifically, after the residual
connections listed in Table 1, we append the feature maps from Fd to Fi. And then, we pass
the combined features to the detection network, which is as same as YOLOv3 [7], to perform
multi-scale object detection.

2 Implementation Details
Semantic segmentation pseudo-labels In order to supervised the semantic segmentation
learning, we use an external pre-trained model [8] to generate pseudo-labels. We choose
the model pre-trained on Cityscapes [2] that labels 19 semantic classes across 5000 high
resolution images, which is similar to our evaluation dataset nuScenes [1]. Please note that
this external network is only used for providing pseudo-labels, and it is not involved in our
model’s training process.

Dataset and training details Our models are trained using Pytorch on a Nvidia Geforce
2080Ti and a Nvidia TITAN RTX with mixed precision. We use Stochastic Gradient Descent
(SGD) for our optimizer, with a batch size 16, learning rate of 0.001 and a momentum of 0.9
for 100 epochs. In order to fairly compare with the state-of-the-art method [6], we follow
their settings to downscale the images to 450×800 resolution to train our depth estimation
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Table 1: Network architecture of the feature extractor Fi and Fd . The depth and RGB features
are concatenated after the residual connections at three different scales. And then, we pass
the combined features to the detection network, which is as same as YOLOv3 [7], to perform
multi-scale object detection.

Layer type (Fi / Fd ) Filters Size / Stride Repeat Fusion scale

Conv 32 3 × 3 / 1 1

Conv 64 3 × 3 / 2 1

Conv 32 1 × 1 / 1 1
Conv 64 3 × 3 / 1
Residual

Conv 128 3 × 3 / 2 1

Conv 64 1 × 1 / 1 2
Conv 128 3 × 3 / 1
Residual

Conv 256 3 × 3 / 2 1

Conv 128 1 × 1 / 1 8
Conv 256 3 × 3 / 1
Residual

Concat / Output 1st scale

Conv 512 3 × 3 / 2 1

Conv 256 1 × 1 / 1 8
Conv 512 3 × 3 / 1
Residual

Concat / Output 2nd scale

Conv 1024 3 × 3 / 2 1

Conv 512 1 × 1 / 1 4
Conv 1024 3 × 3 / 1
Residual

Concat / Output 3rd scale

model, and re-scale back to original 900×1600 resolution for object detection model. The
radar point-clouds is also projected to the 2D image plane with 450×800 resolution as the
input xradar. We accumulate the radar points from 3 nearest timestamps to increase the point
counts. All of the models in our method are implemented based on the codes provided by [6]
and [4]. For more details of the sensor setup, calibration, and synchronization, please refer
to the official site [1].

3 Experiments

3.1 Depth Estimation

Day-Night experiment In this section, we provide the day-night experiment results. As
we can see in Table 2, we separate the validation data of nuScenes [1] to do the evaluation
and compare with the state-of-the-art model [6]. Even during the nighttime with the semantic
segmentation loss, our method still can estimate depth maps with comparable performance,
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Table 2: Day-night performance comparison.
Methods δ1 ↑ δ2 ↑ RMSE ↓ MAE ↓ REL ↓ MAElog ↓

Daytime experiments

Lin et al. (single-stage) [6] 0.894 0.957 5.271 2.157 0.107 0.043
Lin et al. (two-stage) [6] 0.901 0.962 5.030 1.941 0.095 0.038
Ours 0.902 0.965 5.028 1.934 0.093 0.035

Nighttime experiments

Lin et al. (single-stage) [6] 0.814 0.925 6.402 3.096 0.147 0.060
Lin et al. (two-stage) [6] 0.832 0.932 6.290 2.933 0.135 0.056
Ours 0.823 0.929 6.324 3.004 0.142 0.058

Table 3: Per-class object detection performance comparison.
Methods Input data person bicycle car motorcycle bus truck all

YOLOv3 [7] RGB 25.32 20.44 52.91 23.52 49.43 36.34 34.69

FusionYOLO w/
[6] depth maps RGB + Radar 25.91 21.85 53.44 24.31 50.12 37.11 35.54

FusionYOLO w/
our depth maps RGB + Radar 26.37 22.54 53.47 24.45 51.60 37.47 35.95

which can be attributed to the contribution of our proposed confidence map φ . It not only
suppresses the false positives, but also controls the smoothing strength according to whether
the objects is recognized by the model or not.

Qualitative Results In this part, we provide more qualitative results of our method, and
also show the results of [6] for comparison. In Figure 1, we observe that our model produces
excellent results with clear edges and less false positives. Even when the occlusions cause
the semantic information loss, our method still can estimate depth maps of decent quality.

3.2 Object Detection
Per-class performance In order to further analysis the details of the object detection per-
formance, we use the state-of-the-art model’s depth maps and our depth maps to train Fu-
sionYOLO and compare with baseline YOLOv3 [7] to see the differences on per-class AP
results. As we expected, in Table 3, the results show that our method outperforms the oth-
ers in each class. Especially the person, bicycle, and truck class, our method achieve better
performance with a wider margin. In contrast, we can observe that the car class shows less
performance gap. The RGB baseline model has already achieved high performance, and the
introduced depth information only can slightly improve the results.

Multi-scale fusion methods In order to find a proper method to combine the features
from depth maps and RGB images during performing object detection, we consider different
fusion methods in this experiment to compare their differences. The methods are including
element-wised multiplication, element-wised addition, and feature concatenation. Because
the feature extractor Fi and Fd use the same network architecture, the feature maps at the
three different scales (please refer to Chapter 1) have the same dimensions. For element-
wised addition and multiplication, we simply add or multiply the values of each element in
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Figure 1: Qualitative results comparison on nuScenes dataset.

the feature maps, and generate the outputs with the same size. For feature concatenation,
we append the depth features to the RGB features, which doubles the number of the feature
maps and keeps the same height and width. The results show that feature concatenation
achieve the best performance and outperforms the other two methods with a wide margin.

Different feature extractor designs In this section, we discuss the design of the feature
extractor Fd in FusionYOLO. Instead of simply replacing the Darknet-53 [7] with other ex-
isting network architectures to compare the performance, we conducted several experiments
to verify the feasibility of some common design directions, including using the same ar-
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Table 4: Multi-scale fusion methods performance comparison.
Methods AP AP50 AP75

Element-wised multiplication 33.45 63.48 33.84
Element-wised addition 33.12 63.17 33.19
Feature concatenation 35.95 65.77 35.84

Table 5: Different feature extractor Fd designs comparison.
Methods AP AP50 AP75

Shared extractor 32.14 57.12 31.15
Shallow Darknet 34.75 64.23 33.84
Same as Fi 35.95 65.77 35.84

chitecture of Fi, sharing extractor with Fi and a shallow network version. For the shared
extractor, we tried to use the same network to extract the features from RGB images and
depth maps at the same iteration. Specifically, Fi and Fd share the same model parameters,
and fuse the features at three different scales with element-wised multiplication. However,
due to the RGB images and depth maps having the different meanings of a single pixel (RGB
values and distance), it is not straightforward to directly learn the two types of features by
using the same network. For the shallow network design, we simply reduce the number of
residual blocks to its half size in the Darknet-53 [7] to make a shallow extractor. Nonethe-
less, the unbalanced size of extractors are unstable and easily over-fitting in our case. The
results show that using the same architecture of Fi can achieve best performance.
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