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A Supplementary Video

In our supplementary video, we show (a) examples of our SimBinaural dataset; (b) example
results of the binaural audio prediction task on both SimBinaural and FAIR-Play datasets;
and (c) examples of the interface for the user studies.

B RIR Prediction Case Study

We perform a case study on the task of predicting the binaural IR directly from a single
visual frame. This helps us evaluate if it is feasible to learn this information just from a visual
frame, so that it can be then used for our task as in Sec. 3.2 of the main paper. We predict
the acoustic properties of the room by looking at one snapshot of the scene. We predict
the magnitude spectrogram of the IR for the two channels. We also obtain the predicted
waveform of the IR using the Griffin-Lim algorithm [5]. Figure 1 shows qualitative examples
of predictions from the test set. It can be seen that we can get a fairly accurate general idea
of the IR, and the difference between the response in each channel is also captured.

To evaluate if we capture the materials and geometry effectively, we train another task
to predict the reverberation time RTgo of the IR from the visual frame. A more accurate
prediction of RTgn means that our network understands how the wave will interact with the
room and materials and whether it takes more or less time to decay. We formulate this as
a classification task and discretize the range of the R7g( into 10 classes, each with roughly
equal number of samples. We then use a classifier to predict this range class of RTgo using
only the visual frame as input. The classifier, consisting of a ResNet-18, has a test accuracy
of 61.5% which demonstrates the networks’ ability to estimate the R7gy range quite well.
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Input frame Ground Truth IR Predicted IR Ground Truth Spec. Predicted Spec.

Figure 1: IR Prediction: The first column is the input frame to the encoder. The second column
depicts the ground truth IR for the frame and the fourth column is the corresponding spectrogram of
this IR. The third and fifth columns show the predicted IR waveform and spectrogram, respectively.
This predicted IR waveform is estimated from the spectrogram generated by our network.

C SimBinaural dataset details

To construct the dataset, we insert diverse 3D models of various instruments like guitar,
violin, flute etc. and other sound-making objects like phones and clocks into the scene. Each
object has multiple models of that class for diversity, so we do not associate a sound with a
particular 3D model. We have a total of 35 objects from 11 classes.

To generate realistic binaural sound in the environment as if it is coming from the source
location and heard at the camera position, we convolve the appropriate SoundSpaces [1]
room impulse response with an anechoic audio waveform (e.g., a guitar playing for an in-
serted guitar 3D object). We use sounds recorded in anechoic environments, so there is no
existing reverberations to affect the data. The sounds are obtained from Freesound [3] and
OpenAlR data [8] to form a set of 127 different sound clips spanning the 11 distinct object
categories. Using this setup, we capture videos with simulated binaural sound.

The virtual camera and attached microphones are moved along trajectories such that the
object remains in view, leading to diversity in views of the object and locations within each
video clip. Using ray tracing, we ensure that the object is in view of the camera, and the
source positions are densely sampled from the 3D environments. For a particular video, we
use a fixed source position and the agent traverses a random path. The view of the object
changes throughout the video as the camera moves and rotates, so we get diverse orientations
of the object and positions within a video frame, for each video. The camera moves to a
new position every 5 seconds and has a small translational motion during the five-second
interval. The videos are generated at 5 frames per second, the average length of the videos
in the dataset is 30.3s and the median length is 20s.

D Implementation Details

All networks are written in PyTorch [9]. The backbone network is based upon the networks
used for 2.5D visual sound [4] and APNet [10]. The visual network is a ResNet-18 [0]
with the pooling and fully connected layers removed. The U-Net consists of 5 convolution
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Method STFT ENV
Spatial+Geometric  0.724 0.118
IR Pred+Geometric  0.707 0.117

IR Pred+Spatial 0.702 0.117

Table 1: Results on SimBinaural Position-Split with different combinations of constraints.

layers for downsampling and 5 upconvolution layers in the upsampling network and include
skip connections. The encoder for spatial coherence follows the same architecture as the
U-Net encoder for the audio feature extraction. The classifier combines the audio and visual
features and uses a fully connected layer for prediction. The generator network is adapted
from GANSynth [2], modified to fit the required dimensions of the audio spectrogram.

To preprocess both datasets, we follow the standard steps from [4]. We resampled all
the audio to 16kHz and computed the STFT using a FFT size of 512, window size of 400,
and hop length of 160. For training the backbone, we use 0.63s clips of the 10s audio and
the corresponding frame. Frames are extracted at 10fps. The visual frames are randomly
cropped to 448 x 224. For testing, we use a sliding window of 0.1s to compute the binaural
audio for all methods.

We use the Adam optimizer [7] and a batch size of 64. The initial learning rates are
0.001 for the audio and fusion networks, and 0.0001 for all other networks. We trained
the FAIR-Play dataset for 1000 epochs and SimBinaural for 100 epochs. We train the RIR
prediction separately and use the weights for initialization while training jointly. The & for
choice of frame is set to 1s and the A’s used are set based on validation set performance to
Ag=10,As =1, =0.01,Ap = 1.

E Additional Ablations

Table 2 in the main paper illustrates that adding each component of our method individually
to the visual features helps improve the binaural audio quality performance. Table 1 provides
additional analysis to evaluate the combination of different constraints with the backbone for
the SimBinaural Position-Split. The constraints complement each other to learn better visual
features, leading to better audio performance.
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