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In this supplementary, we provide more a detailed description of our proposed Adaptive
Attention Mechanism (ATT). Afterwards, network configurations of both CNN-based (AEI-
B) and GCN-based (AEI-G) architectures are reported. Additionally, we conduct additional
experiments to express the effectiveness of our proposed actors spectator and our proposed
adaptive attention. Finally, we show qualitative results to illustrate the performance compar-
ison between our proposed AEI-B and AEI-G with other SOTA methods on both temporal
action proposal generation (TAPG) and temporal action detection (TAD) tasks. 1

1 Adaptive Attention Mechanism

To begin, the environment feature f e and actor features Fa are embedded into the same
dimensional space by a multi-layer perceptron (MLP) parameterized by θ MLPθ (·):

f̂ e = MLPθe( f e) (1)

F̂a = { f̂ a}NB
i=1 where f̂ a = MLPθa( f a

i ) (2)
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1More qualitative results and comparisons are provided in the attached video in supplementary.



2 KHOA VO ET AL.: AEI WITH ADAPTIVE ATTENTION

Then, both f̂ e and F̂a are combined by element-wise addition (i.e., ⊕) to form a col-
laborative feature F̂c: Fc = { f c

i }
NB
i=1, where f c

i = f̂ a
i ⊕ f̂ e. Afterwards, we compute the

L2-norm of each collaborative feature Fc. It is proven that features with the greatest L2-
norm values carry meaningful information and better contribute to later modules [14], i.e.,
Ac = {ac

i }
NB
i=1, , where ac

i = || f c
i ||2.

Next, we re-scale all L2-norm values by softmax function to be summed up to 1.0, be-
cause L2-norm values are ranged arbitrarily:

Ac = {âc
i }

NB
i=1 where âc

i =
eac

i

Σ
NB
i=1eac

i
(3)

We obtain main actor feature vectors:

F̃a = { f a
i |âc

i > τ} where τ =
1
|Âc|

(4)

After that, we fuse a set of main actors feature vectors F̃a into a single feature vec-
tor f a by leveraging self-attention model proposed in [17]. F̃a is fed into three MLPs
to build three intermediate features Q, K, and V . Each of these has a specific role to
form the relations between actors and re-weight each of them based on their relevance in
the relations. Each qi ∈ Q, corresponding to f a

i , is used to generate an attention mask.
Each value vi ∈ V is re-weighted by this attention mask. The whole process is defined as

Table 1: The detailed architecture of CNN-
based BMM. F is the input feature dimen-
sions. T and D are the temporal length of
the video and maximum duration of propos-
als in terms of number of snippets. The ob-
tained outputs are OT and OP, which are cor-
responding to boundary-predictions and pro-
posal actionness scores.

Layers Input Output
1DConv.
256×3/1, ReLU

I : F×T O1 : 256×T

1DConv.
128×3/1, ReLU

O1 : 256×T O2 : 128×T

1DConv.
256×3/1, ReLU

O2 : 128×T O3 : 256×T

1DConv.
2×3/1 , Sigmoid

O3 : 256×T OT : 2×T

Matching layer O2 : 128×T O5 : 128 × 32 ×
D×T

3DConv.
512 × 32 × 1 ×
1/(32,0,0) , ReLU

O5 : 128 × 32 ×
D×T

O6 : 512 × 1 ×
D×T

squeeze O6 : 512 × 1 ×
D×T

O7 : 512×D×T

2DConv.
128 × 1 × 1/(0,0) ,
ReLU

O7 : 512×D×T O8 : 128×D×T

2DConv.
128 × 3 × 3/(1,1) ,
ReLU

O8 : 128×D×T O9 : 128×D×T

2DConv.
2×1×1/(0,0) , Sigmoid

O9 : 128×D×T OP : 2×D×T

Table 2: The detailed architecture of GCN-
based BMM. F is the input feature dimen-
sions. T and D are the temporal length of
the video and maximum duration of propos-
als in terms of number of snippets. The ob-
tained outputs are OT and OP, which are cor-
responding to boundary-predictions and pro-
posal actionness scores.

Layers Input Output
1DConv.
256×3/1, ReLU

I : F×T O1 : 256×T

G-Conv. O1 : 256×T O2 : 256×T
G-Conv. O2 : 256×T O3 : 256×T
1DConv.
2×1/1, Sigmoid

O3 : 256×T OT : 2×T

G-Conv. O2 : 256×T O5 : 256×T
Matching layer O5 : 256×T O6 : 8192×D×T
2DConv.
512 × 1 × 1/(1,1),
ReLU

O6 : 8192×D×T O7 : 512×D×T

2DConv.
128 × 1 × 1/(1,1),
ReLU

O7 : 512×D×T O8 : 128×D×T

2DConv.
128 × 3 × 3/(1,1),
ReLU

O8 : 128×D×T O9 : 128×D×T

2DConv.
128 × 3 × 3/(1,1),
ReLU

O9 : 128×D×T O10 : 128×D×T

2DConv.
2×1×1/(1,1), Sig-
moid

O10 : 128×D×T OP : 2×D×T
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Table 3: G-Conv. layer
Layers Input Output
1DConv.
128×1/1, ReLU

I: 256×T O1 : 128×T

1DConv.
128×3/1, ReLU

O1 : 128×T O2 : 128×T

1DConv.
256×1/1

O2 : 128×T O3 : 256×T

kNN I : 256×T I′ : 512×T × k

2DConv.
128 × 1 × 1/(1,1),
ReLU

I′ : 512×T × k O′1 : 128× T ×
k

2DConv.
128 × 1 × 1/(1,1),
ReLU

O′1 : 128× T ×
k

O′2 : 128× T ×
k

2DConv.
256×1×1/(1,1)

O′2 : 128× T ×
k

O′3 : 256× T ×
k

Maxpool O′3 : 256× T ×
k

O′′3 : 256×T

ReLU I +O3 +O′′3 O4 : 256×T

A(qi,K,V ) = so f tmax( qi·KT
√

dK
)V , where dK is the number of dimensions of features in K,

following [17]. Finally, we obtain the actors visual feature f a as: f a = 1
|Q| ∑

|Q|
i A(qi,K,V ).

2 Boundary Matching Module Configuration

In our proposed AEI framework, we examine the boundary matching module (BMM) with
both CNN architecture and GCN architecture. The network configuration of CNN-based
BMM is described as in Table 1, whereas that of GCN-based BMM is described as in Table 2
and the G-Conv. layer is defined in Table 3.

3 Additional Experiments

In this section, we first examine our proposed AEI-B and AEI-G on various features in Sub-
sec. 3.1. We then investigate our proposed framework in the cases of with and without using
the proposed actors spectator in Subsec 3.2. To prove the effectiveness of our proposed adap-
tive attention mechanism, we have conducted the comparison between adaptive attention and
other attention mechanisms in Subsec. 3.3.

3.1 Various Features

The performance of our proposed CNN-based (AEI-B) and GCN-based (AEI-G) architec-
tures on different features (i.e. C3D [7], 2Stream [15] and Slowfast [5]) is reported in Ta-
ble 4 on ActivityNet-1.3 dataset [4]. The first part of the table is corresponding to the SOTA
methods, whereas the second part of the table presents our performance on various types
of features. As demonstrated, our proposed AEI outperforms other SOTA methods regard-
less of the boundary matching network backbones (either CNN-based or GCN-based) and
regardless of feature network backbones (either C3D [7], 2Stream [15] or Slowfast [5]).
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Table 4: Performance of AEI-B and AEI-G with various features i.e. C3D [7], 2Stream [15]
and Slowfast [5] on TAPG and ActivityNet-13 [4] dataset

Feature AR@100 AUC(val) AUC(test)
TCN [2] 2Stream - 59.58 61.56
MSRA [18] P3D - 63.12 64.18
SSTAD [1] C3D 73.01 64.40 64.80
CTAP [6] 2Stream 73.17 65.72 -
BSN [10] 2Stream 74.16 66.17 66.26
SRG [3] 2Stream 74.65 66.06 -
MGG [13] I3D 74.54 66.43 66.47
BMN [11] 2Stream 75.01 67.10 67.19
DBG [9] 2Stream 76.65 68.23 68.57
BSN++ [16] 2Stream 76.52 68.26 -
TSI++ [12] 2Stream 76.31 68.35 68.85
MR[19]. I3D 75.27 66.51 -

C3D 77.25 69.43 69.94
AEI-B 2Stream 76.64 68.48 69.21

Slowfast 76.73 68.94 69.32
C3D 77.24 69.47 70.09

AEI-G 2Stream 76.66 68.41 69.10
Slowfast 77.00 69.18 69.66

Table 5: Effectiveness of our proposed Actor in TAPG on ActivityNet-1.3 [4]
AR@100 AUC(val) AUC(test)

AEI-B W/O Actor 77.07 67.55 68.87
With Actor 77.25 69.43 69.94

AEI-G W/O Actor 76.33 68.68 68.74
With Actor 77.24 69.47 70.09

3.2 Actors Spectator

Actors spectator is one of the main components in our proposed cognitive-based visual rep-
resentation (CVR). In addition to the ablation study in the main manuscript, we conduct
further experiments in the cases of with and without using our proposed actors spectator as
follows:

• Case 1: Without actors spectator, CVR is mainly based on environment representation.
This case is equivalent to the scenario where only environment is taken into consideration.

• Case 2: With actors spectator, CVR is computed based on both actor and environment,
and then on the interaction between actor and environment. This case is our proposed
framework.

The efficiency of actors spectator on both TAPG and TAD is examined and given in Ta-
bles 5, 6, 7, 8 corresponding to ActivityNet-1.3 dataset [4] and THUMOS-14 dataset [8].
As demonstrated, the proposed actors spectator helps to boost the performance of AEI by a
large margin for both TAPG and TAD.
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Table 6: Effectiveness of our proposed Actor in TAPG on THUMOS-14 [8]
@50 @100 @200 @500 @1000

AEI-B W/O Actor 37.68 46.48 53.89 61.22 65.45
With Actor 44.97 50.13 57.34 64.43 67.78

AEI-G W/O Actor 38.94 47.80 54.93 61.92 65.96
With Actor 45.31 51.12 58.19 64.58 67.96

Table 7: Effectiveness of our proposed our proposed Actor in TAD on ActivityNet-1.3 [4]
0.5 0.75 0.95 Average

AEI-B W/O Actor 50.2 32.7 9.5 32.7
With Actor 52.3 34.5 9.7 34.7

AEI-G W/O Actor 50.3 32.7 9.5 32.8
With Actor 52.4 34.5 9.6 34.7

Table 8: Effectiveness of Actor in TAD on THUMOS-14 [8]
0.7 0.6 0.5 0.4 0.3

AEI-B W/O Actor 22.2 36.6 50.5 59.5 66.8
With Actor 22.3 37.9 52.0 60.4 67.6

AEI-G W/O Actor 22.4 36.1 50.3 59.8 66.5
With Actor 22.4 37.8 52.1 60.6 67.3

Table 9: Effectiveness of our proposed Adaptive Attention in TAPG on ActivityNet-1.3 [4]
AR@100 AUC(val) AUC(test)

Hard [14] 76.93 69.06 69.20
AEI-B Soft [17] 76.72 69.16 69.26

Adaptive 77.25 69.43 69.94
Hard [14] 77.21 68.97 69.41

AEI-G Soft [17] 77.25 69.36 69.69
Adaptive 77.24 69.47 70.09

3.3 Adaptive Attention
Adaptive attention is one of the main components in our proposed cognitive-based visual
representation (CVR) that is designed to model the relationship between actor(s) and envi-
ronment. In this section, we investigate the strength of our proposed adaptive attention by
comparing it to hard-attention [14] and soft-attention [17] mechanisms. Tables 9, 10, 11
provide the performances of both AEI-B and AEI-G using three different attention mecha-
nisms. While soft-attention mechanism [17] and hard-attention mechanism [14] yield equiv-
alent performance, our adaptive attention mechanism achieves the SOTA performance on
both TAGP and TAD.

4 Qualitative Results
In this section, we visualize some examples to illustrate the performance comparison be-
tween our proposed AEI-B and AEI-G with SOTA methods (e.g., BMN [11], DBG [9]) on
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Table 10: Effectiveness of our proposed Adaptive Attention in TAPG on THUMOS-14 [8]
@50 @100 @200 @500 @1000

AEI-B Hard [14] 42.10 50.00 56.57 63.48 67.49
Soft [17] 42.18 49.65 56.66 63.39 66.77
Adaptive 44.97 50.13 57.34 64.43 67.78

AEI-G Hard [14] 43.26 49.92 56.93 63.75 67.72
Soft [17] 40.26 49.67 56.34 63.41 67.32
Adaptive 45.31 51.12 58.19 64.58 67.96

Table 11: Effectiveness of our proposed Adaptive Attention in TAD on THUMOS-14 [8]
0.7 0.6 0.5 0.4 0.3

Hard [14] 22.4 36.7 51.2 60.1 67.2
AEI-B Soft [17] 22.1 37.5 51.4 60.1 66.6

Adaptive 22.3 37.9 52.0 60.4 67.6
Hard [14] 22.1 37.0 51.2 60.1 67.2

AEI-G Soft [17] 21.7 37.5 51.4 60.2 66.7
Adaptive 22.4 37.8 52.1 60.6 67.3

GT

BMN

p=0.57

p=0.560.0 62.96

8.96DBG

9.78 55.47

AEI-G

57.6

p=0.77 56.969.6

p=0.69 56.198.65AEI-B

Figure 1: Qualitative comparison between our proposed method (i.e. AEI-B and AEI-G)
with other SOTA methods (i.e. BMN [11], DBG [9]). The human being main actor occupies
a large area in spatial domain.

TAPG as given in Figs. 1, 2, 3, 4. The performance of each method is shown in a tuple of
starting time, ending time, and confident score. The performance comparison is made under
following cases:

• Human-being main actor: Figs. 1 shows an example where the main actor occupies a
big area of the spatial domain. In this case, spatial feature mainly presents the main
actor who commits the action. In other words, the spatial feature carries the action
information; thus, other SOTA methods (i.e. BMN [11], DBG [9]) obtains good per-
formance while our AEI slightly improves. Figs. 2 shows an example where the main
actor occupies a small area of the spatial domain. In this case, spatial feature mainly
presents the environment that does not carry the action information. Thus, other SOTA
methods are unable to perform well. On the other hand, our AEI with actors spectator
and adaptive mechanism is able to focus on the main actor to capture action informa-
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GT

BMN

a)

p=0.42

p=0.54

p=0.57

0.0 39.94

11.5DBG

AEI-B

21.23

20.111.77

13.1 19.45

p=0.46 20.3512.39AEI-G

GT

BMN

b)

p=0.54

p=0.57

40.0 87.51

DBG

AEI-B 66.4144.12

44.14 62.35

p=0.46 64.5847.77AEI-G

*none*

Figure 2: Qualitative comparison between our proposed method (i.e. AEI-B and AEI-G)
with other SOTA methods (i.e. AEI-B and AEI-G) with other SOTA methods (i.e. BMN [11],
DBG [9]). The human-being main actor occupies a small area in spatial domain.

GT

BMN

c)

p=0.552.75 89.98

DBG

AEI-G

p=0.81 78.553.72

p=0.4152.75 79.13

53.19 77.87

p=0.48 79.1353.66

AEI-B

Figure 3: Qualitative comparison between our proposed method (i.e. AEI-B and AEI-G)
with other SOTA methods (i.e. BMN [11], DBG [9]). The nonhuman-being main actor
commits the action.

tion. Compared to other methods, our AEI outperforms by a large margin.

• Nonhuman-being main actors: (Fig. 3) shows an example where an action is com-
mitted by a nonhuman-being main actor (a dog), while (Fig. 4) shows an example
where the action is committed by both human-being and nonhuman-being main actors
(a dog). Our proposed cognitive-based visual representation (CVR), which is able to
extract features from both actor and environment as well as model the relationship be-
tween actor and environment, aims to capture action environment feature in the case
that nonhuman-being main actor exists. Thus, our proposed AEI (both AEI-B and
AEI-G) obtains good performance in this case.
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GT

BMN

a)

p=0.50.0 33.20

18.29 31.34

p=0.74

DBG

AEI-B 31.1218.57

p=0.4 33.2020.9

p=0.62 30.9220.01

*none*

AEI-G

Figure 4: Qualitative comparison between our proposed method (i.e. AEI-B and AEI-G)
with other SOTA methods (i.e. BMN [11], DBG [9]). Both human and nonhuman-being
main actors commit the action.
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