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1 Derivation of NAT cost function (mentioned in Sec. 3)
We interpret d(xi, x̃i) as a random variable with Gaussian distribution, d(xi, x̃i)∼ G(µi,σ

2
i ),

where µi = E[d(xi, x̃i)] indicates its mean, whereas σ2
i = Var[d(xi, x̃i)] is its variance. When

the predicted saliency map x̂i is optimal, i.e. when x̂i = xi, d(x̂i, x̃i) has the same statistical
distribution of d(xi, x̃i). Therefore, for a perfect saliency predictor, we can write d(x̂i, x̃i) ∼
G(µi,σ

2
i ). Note that, for our proposed noise-aware training (NAT), µi and σi are assumed to

be known, and therefore, x̂i is the only unknown. The likelihood of d(x̂i, x̃i) is given by:

p[d(x̂i, x̃i)] =
1√

2πσi
e
− [d(x̂i ,x̃i)−µi ]

2

2σ2
i . (1)

Given our interpretation of d(x̂i, x̃i), for a dataset containing N +1 saliency maps, the nega-
tive log likelihood is:

J(x̂0, x̂1, ..., x̂N) =−ln∏i
1√

2πσi
e
− [d(x̂i ,x̃i)−µi ]

2

2σ2
i =

∑i−ln{ 1√
2πσi

e
− [d(x̂i ,x̃i)−µi ]

2

2σ2
i }=

∑i{ln(
√

2πσi)+
[d(x̂i, x̃i)−µi]

2

2σ2
i

}. (2)
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We want to train the saliency models to predict all the {x̂i}i=0...N that maximize the
likelihood. Therefore, the optimization problem becomes:

(x̂0, x̂1, ..., x̂N) = argmin
(x̂0,x̂1,...,x̂N)

J(x̂0, x̂1, ..., x̂N) =

argmin
(x̂0,x̂1,...,x̂N)

∑i{ln(
√

2πσi)+
[d(x̂i, x̃i)−µi]

2

2σ2
i

}. (3)

Upon simplification (removing the terms that do not depend on (x̂0, x̂1, ..., x̂N), that are the
only unknowns), we obtain:

(x̂0, x̂1, ..., x̂N) = argmin
(x̂0,x̂1,...,x̂N)

∑i{
[d(x̂i, x̃i)−µi]

2

σ2
i

}. (4)

This leads to the formulation of the NAT cost function:

Jideal
NAT = ∑i{

[d(x̂i, x̃i)−µi]
2

σ2
i

}= ∑i{
[d(x̂i, x̃i)−E[d(xi, x̃i)]]

2

Var[d(xi, x̃i)]
}. (5)

2 A toy example to motivate NAT (mentioned in Sec. 3)
Assume that a method predicts the (unobservable) distribution xi exactly, that is x̂i = xi.
Because of measurement noise and incomplete sampling in x̃i (which is the the saliency map
estimated from insufficient gaze data, i.e. the one typically used for training), d(xi, x̃i) 6= 0,
even though the prediction is perfect. In this scenario, it would suboptimal to train a saliency
predictor to minimize d(xi, x̃i).

Let us consider a 1D toy example: Figs. 1(a,h) show two 1D ground-truth “saliency
maps” (or pdfs) xi, one unimodal, and one bimodal. We simulate the “1D gaze-data acqui-
sition” by sampling 3 (red circles) or 30 (blue) spatial locations (or “gaze fixations”) from
xi. Following the de facto standard to generate saliency maps from single gaze locations, we
blur each fixation (Fig. 1(b)), and accumulate the resulting curves (Fig. 1(c)). This results in
approximations, x̃i, of the ground-truth saliency maps. The inaccurate positions of the modes
in these estimated saliency maps mimics the measurement noise, while the finite number of
1D gaze fixations used to estimate these maps simulates incomplete sampling.

When few fixations are available, x̃i may be shifted with respect to xi (Fig. 1(c)), and the
number of its modes may not match xi (Fig. 1(j)). Furthermore, when xi is multimodal, the
mass of each mode in x̃i may be imprecisely estimated compared to xi (Fig. 1(j)). The stan-
dard deviation of 1000 random realizations of x̃i (Std[x̃i]), which measures the uncertainty
in x̃i (and therefore the quality of estimation of xi using x̃i), decreases when a large number
of fixations are used to reconstruct x̃i and remains high for a smaller number of fixations.
This is shown as the light-blue / light-red shaded regions in Figs. 1(d, g, k, n), while the
solid plot red / blue curve shows E[x̃i]. Furthermore, the level of uncertainty is proportional
the complexity of the ground-truth saliency map: e.g., given 3 fixations to reconstruct x̃i,
the uncertainty is lower when the underlying ground-truth xi map is unimodal (Fig. 1(d)),
and higher when xi is bimodal Fig. 1(k). We note that in Figs. 1(d, g, k, n), E[x̃i] still dif-
fers from xi because of the blurring operation used in the reconstruction of x̃i from sampled
1D locations from xi. When the reconstruction process for x̃i is perfect (a topic of research
beyond the scope of this work), such reconstruction errors would be eliminated. For our
experiments, we adopt this standard reconstruction process.
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Figure 1: A toy example to motivate NAT. Plots in (a) and (h) show the unimodal and mul-
timonal 1D pdfs xi in dashed black lines – these are analogous to the true underlying 2D
saliency maps for video frames / images. The measured (or training) saliency maps are re-
constructed by first sampling “fixations” (red / blue circles in (a, h)) from xi, then blurring
(b, e, i, l), summing, and normalizing to obtain the resulting reconstructed saliency maps
x̃i (d, g, j, m). When a limited number of observers is available (e.g.,3, in the red plots in
(c,j)), the resulting reconstructed x̃i may differ in shape from xi, e.g.,due to random shifts,
reconstruction errors, etc. Plots d, g, k, n show the expected value and standard deviation
for multiple realizations of x̃i, with respect to xi. The deviation of x̃i from xi results in the
statistics E[KLD(xi, x̃i)] and Var[KLD(xi, x̃i)] to be non-zero (as shown in the titles of plots
d, g, k, n). Furthermore, as is evident from these plots, these statistics are larger when few
observers are available and when xi has a complex shape (e.g.,multimodal), which makes xi
more susceptible to inaccurate approximation using x̃i. The plots considered here for xi are:
a Gaussian centered at µ = 50, σ = 5; and a mixture with two components at µ = [25,75],
probabilities P = [0.3,0.7], and σ = 5.

The uncertainty in x̃i due to measurement noise and incomplete sampling results in uncer-
tainty in accurately estimating d(xi, x̃i). We now want to estimate the distribution p[d(xi, x̃i)],
where we model d(xi, x̃i) as a Gaussian random variable. We compute KLD(xi, x̃i) for 1,000
random realizations of x̃i and estimate E[KLD(xi, x̃i)], Std[KLD(xi, x̃i)]. These are reported
in the titles of Figs. 1(d, g, k, n). We use KLD as discrepancy function because of its wide
adoption for saliency estimation, but the results presented here hold for other metrics as well.
We observe that:

• E[KLD(xi, x̃i)]> 0, i.e. KLD(xi, x̃i) is biased. The source of the bias is twofold. First,
KLD(xi, x̃i) > 0 because E[x̃i] is a smoothed version of xi (bias due to the choice
of the method used to reconstruct x̃i), independently from the number of observers.
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Second, x̃i is noisy (Std[x̃i]> 0), which, especially for a limited number of observers,
contributes with an additional bias to KLD(xi, x̃i).

• Std[KLD(xi, x̃i)]> 0, and it tends to be smaller for a larger number of observers.

• For a given number of observers, E[KLD(xi, x̃i)] and Std[KLD(xi, x̃i)] are larger for
multimodal maps.

We conclude that, when x̃i is affected by measurement noise and incomplete sampling,
the expected value and variance of the discrepancy d(xi, x̃i) are not zero, depend on the
number of observers, and are different for each frame. These properties, which also hold for
2D saliency maps recorded from real human observers, form the basis for the development
and interpretation of NAT.

3 Gaze data analysis for ForGED (mentioned in Sec. 4)

Figure 2: Inter-observer consistency (IOC) curve computed on test-set frames of ForGED
containing at least 19 observers. Each data point is an average of the IOC value for the
given value of N, with the average computed over multiple realizations across the frames.
The fitted curve is shown with a solid line and indicates the diminishing amount of new
information that gaze data from additional observers imparts, when N is sufficiently high.

Observer consistency and ForGED dataset split. As discussed in Sec. 1 of the main
paper, IOC curve measures how well a saliency map reconstructed from gaze data of N
observers explains the gaze of a new observer as a function of N [5, 8, 15]. A converged
IOC curve indicates that additional observers do not add significant new information to the
reconstructed saliency map [5, 7]. A typical test of whether a dataset captures sufficient
observers is to evaluate the level of convergence of the IOC curves on average across all
frames at maximum value for N (sometimes by using curve-fitting and extrapolation [7]).
To obtain the average IOC for ForGED, we sample 1 out of every 5 frames from ForGED
test videos containing at least 19 observers – for a total of 1500 frames. For each frame, we
compute the per-frame IOC curve with 20 random realizations for the subset of observers
that constitute the N observers and the subset that constitutes the new observer whose gaze
data is to be explained by the N-observer saliency map. All realizations of the IOC curves
across all sampled frames are averaged to obtain the IOC curve shown in Fig. 2. As can be
seen from Fig. 2, the gradient magnitude of the IOC curve is small at N = 17 (0.04). This
further diminishes upon extrapolation to N = 21 observers to 0.02. Our test set therefore
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contains gaze data from up to 21 observers per video (median 17). As noted in the main
paper (Limitations and Future Work in Sec. 6) - while on average the IOC curves across all
evaluated datasets (LEDOV, DIEM, ForGED) show very small gradient at sufficiently high
number of observers, the level of convergence for each frame may be different (content-
dependent) and motivates the need for NAT. This also presents an interesting direction of
future research to design noise-robust evaluation schemes. Note that, while the ForGED test
dataset contains gaze data from a large number of observers (that ensures small gradients in
the IOC curves at maximum available N), the ForGED training dataset consists of a larger
number of videos but with gaze data from only 5−15 observers (the majority of the videos
contain 5 observers). This setting simulates the scenario where training data with limited
number of observers is available (the setting most suitable for NAT) – while the testing is
always performed on more accurate saliency maps. The training-validation-test split for
ForGED videos is 379 videos for training, 26 for validation, and 75 for testing. As already
discussed in the main paper (and also shown in Sec. 5), for the different experiments enlisted
in tables, the training dataset size is varied in terms of number of available training videos,
V , and number of observers, N, used to reconstruct the saliency maps x̃i per video – to
demonstrate the performance gain of NAT for varying amount of training data.

LOW FIXATION DENSITY HIGH FIXATION DENSITY

(a) ForGED (b) DIEM (c) LEDOV

Figure 3: Accumulated fixation density across gaze data from all observers across all frames
in (a) ForGED (b) DIEM and (c) LEDOV.

Observer gaze behavior in ForGED. Given that the main character is placed at the center
of the screen in Fortnite game, we observe an affinity towards center in the gaze behavior.
Events such as combat, focused motion towards a location such as the horizon, attempts
to pick up resources such as ammunitions lead to observer gaze behavior that follows the
narrative of the game-play (e.g.,viewers observe the opponent when the main character is in
combat, viewers look towards the horizon when the main character is moving towards it). On
the other hand, when a scene becomes relatively uneventful, such as when the main central
character has been running towards the horizon for a few seconds, the observers’ gaze tends
to become more exploratory – scanning the surroundings, or simply browsing the evolving
scenery. Examples of all such scenes can be found in the supplementary video, Fig. 3 of
the main paper, and Fig. 4 in this Supplementary document. Lastly, we accumulate all of
the gaze locations captured on ForGED into a fixation density map (Fig. 3a) to assess the
common viewing tendencies of observers. We also compare these for LEDOV and DIEM.
As discussed in Sec. 4 of the main paper, due to the main character near the center of the
frame, the aiming reticle at the center of the frame, and a guiding mini-map on the top
right, observers look at these regions frequently. As compared to LEDOV and DIEM, such a
behavior is uniquely representative of the observer behavior in third person shooting games
such as Fortnite. In case of LEDOV and DIEM, we also observe a bias towards the center –
but it tends to be more widespread as shown in Fig. 3.
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4 Analysis of approximation in Eq. 6 (mentioned in Sec. 3)

To analyze the accuracy of Eq. 6 in the main paper, we select a subset of the video frames
from the DIEM dataset that contains gaze data from more than 200 observers. Given the
very large number of gaze fixations for these frames, we anticipate that the estimated human-
saliency map x̃i is very close to ground-truth saliency xi [7] for every such frame i (as also
confirmed by converged IOC curves for these frames). We therefore analyze the accuracy
of Eq. 6 under the assumption that the > 200-observer gaze maps of these frames represent
xi. From these 200-observer gaze maps (xi), we sample a certain number (denoted as M) of
gaze fixation locations followed by blurring to compute x̃i. Therefore, x̃i = SR(xi;M). Then,
we compute ˜̃x by sampling M spatial locations as per the pdf x̃ followed by blurring. That is,
˜̃xi = SR(x̃i;M).

Using multiple realizations of x̃ and ˜̃x, we estimate E[d(x, x̃)], E[d(x̃, ˜̃x)], Var[d(x, x̃)],
Var[d(x̃, ˜̃x)]. We find that the mean absolute percentage error (MAPE) in the approximation
of E[d(x, x̃)] (Eq. 6 in main paper) goes from 21% for N = 5, to 13% for N = 15, and down
to 10% for N = 30. Similarly, MAPE in the approximation of Var[d(x, x̃)] (Eq. 6 in main
paper) goes from 13% for N = 5, to 6% for N = 15, and down to 5% for N = 30. Note that a
large under/over-estimation of E[d(x, x̃)] and Var[d(x, x̃)] in Eq. 6 (main paper) may lead to
overfitting to noisy data or sub-optimal convergence respectively using Eq. 7 (main paper)
for training. This would result in poor performance of NAT compared to traditional training
– which, as shown by the results, is not the case.

5 Additional Results (mentioned in Sec. 5)

We now report the additional experiments performed to compare NAT (Eq. 6 in main paper)
to traditional training (abbreviated as TT in this section; Eq. 2 in main paper). Furthermore,
we show typical gaze maps obtained through TT and NAT compared to the ground truth for
TASED on the ForGED dataset in Fig. 4.

5.1 Dataset type and size

In this section, we continue reporting the results from Sec. 5 of the main paper, where we
compared NAT vs. TT for different dataset types and sizes. Table 1 compares the per-
formance of TT to NAT on an additional dataset, the DIEM dataset [11], for the TASED
architecture [10], and using KLD as discrepancy for training. As done throughout Sec. 5 of
the main paper, the evaluation is performed on videos with gaze data from all of the available
observers (in contrast to training, for which a subset of observers are used, see Table 1 in
main paper). In case of DIEM dataset, given that only 84 videos are available, we use 30 or
60 videos for training and report the results on the remaining 24 videos, which are also used
as validation set. The number of observers for these videos ranges from 51 to 219, which
makes DIEM a very low-noise evaluation set [7]. Results on DIEM are consistent with those
reported in the main paper, with NAT providing better metrics in evaluation when compared
to TT when less training data (e.g., 30 videos) is available.
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

30

5 TT 0.641 0.698 0.591 3.517 0.922
NAT 0.599 0.708 0.592 3.513 0.934

15 TT 0.597 0.710 0.602 3.582 0.930
NAT 0.583 0.718 0.607 3.627 0.932

31 TT 0.576 0.724 0.614 3.663 0.925
NAT 0.559 0.731 0.618 3.694 0.928

60

5 TT 0.528 0.735 0.619 3.709 0.933
NAT 0.518 0.737 0.616 3.639 0.940

15 TT 0.485 0.757 0.639 3.795 0.933
NAT 0.493 0.754 0.635 3.792 0.936

31 TT 0.476 0.759 0.641 3.821 0.938
NAT 0.467 0.766 0.654 3.864 0.935

Table 1: Saliency metrics on DIEM, for TASED Net, training with KLD as discrepancy, and
various number of training videos and observers. The best metrics between TT (Eq. 2 in
main paper) and NAT are in bold.

m
ea

su
re

d
x̃ i

KLD=1.48, CC=0.52 KLD=0.88, CC=0.78 KLD=1.40, CC=0.47 KLD=1.22, CC=0.52

T
T

KLD=0.82, CC=0.77 KLD=0.59, CC=0.69 KLD=0.54, CC=0.75 KLD=1.28, CC=0.51

N
A

T

Figure 4: Typical gaze maps obtained through TT (second row – Eq. 2 in main paper) and
NAT (third row) compared to the ground truth (first row) for TASED on the ForGED dataset,
training with KLD loss, 30 training videos and 5 observers per frame (see Table 4a in main
paper). Each panel reports in the title the corresponding KLD and CC values. The last
column shows a failure case where the metrics KLD and CC indicate that NAT is worse than
TT, although a visual inspection might indicate otherwise. Furthermore, the saliency maps
predicted with TT indicate more centralized unimodal predictions – while NAT accurately
predicts decentralized, multi-modal saliency maps even when trained with less data. The
visualization of saliency map overlays follows the scheme in Fig. 3 of main paper. ForGED
images have been published with permission of Epic Games.

5.2 Discrepancy functions

Table 2 shows NAT vs. TT using d =−NSS on ForGED dataset. In Table 2, we notice that
NAT overcomes TT in terms of NSS only for 2 or 5 observers, and 30 training videos. Recall
that, by design, NSS optimizes the predicted saliency map only at the measured fixation
locations. Consequently, when few fixations per frame are available for training, a high NSS
score may not generalize well to other evaluation metrics that evaluate different aspects of
the quality of a predicted saliency map. This can be alleviated by additional regularization
(such as using additional metrics as we do with d = KLD−0.1CC−0.1NSS in Table 4b of
the main paper and observe that high NSS scores generalize to good performance in terms of
other metrics). In other words, for few-observer training, optimizing for NSS alone may not
constrain the predicted saliency map sufficiently — which shows up as poor generalization
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to other metrics. This is what we observe in Table 2, where the regularizing effect of NAT
leads to worse NSS values compared to TT; but, all of the other evaluation metrics indicate
NAT to be better.

train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

30

2 TT 2.005 0.362 0.302 2.677 0.788
NAT 1.408 0.528 0.371 3.163 0.887

5 TT 1.642 0.489 0.28 3.212 0.898
NAT 1.254 0.566 0.417 3.39 0.906

15 TT 1.518 0.506 0.403 3.672 0.826
NAT 1.155 0.608 0.435 3.552 0.91

100
2 TT 1.328 0.563 0.383 3.783 0.899

NAT 1.206 0.584 0.426 3.44 0.906

5 TT 1.312 0.578 0.452 3.983 0.835
NAT 1.165 0.61 0.475 3.747 0.879

379
2 TT 1.163 0.614 0.475 4.161 0.857

NAT 1.028 0.642 0.495 3.858 0.901

5 TT 1.093 0.633 0.491 4.381 0.875
NAT 1.006 0.658 0.512 3.928 0.892

Table 2: NAT vs. TT on ForGED for TASED, d = −NSS (a fixation-based discrepancy),
various number of training videos and observers. Best metrics for each pair of experiments
in bold.

To further verify that NAT generalizes to different discrepancy functions, we train and
test TASED on LEDOV [4] with the fixation-based discrepancy function, d = −NSS, and
the combination of fixation and density-based discrepancy functions, d = KLD− 0.1CC−
0.1NSS (which is a popular discrepancy function used in video-saliency research [1, 14]).
The test set for LEDOV is used for all reported evaluations on LEDOV dataset, which con-
tains gaze data from 32 observers per video.

Table 3 shows NAT vs. TT (Eq. 2 in main paper) using d = −NSS. For this specific
experiment, with TT we observe that adopting RMSprop as the optimizer (as done for all
experiments in the paper) shows very fast convergence to very high NSS values. While this
property of fast and optimal convergence of discrepancy function has proven useful for all
experiments in the paper (see Sec. 6 for details), for this specific experiment the solution
provided by RMSprop optimization shows poor generalization to all other saliency metrics.
This behavior is alleviated to some extent by switching RMSProp with Stochastic Gradient
Descent (SGD) for TT – but at the cost of poor convergence in terms of NSS. To show this,
in Table 3, we report two sets of experiments for TT for each size of training dataset (one
with SGD and another with RMSprop). With NAT, however, we observe a consistent optimal
convergence due to the regularizing effect of the NAT formulation that prevents overfitting
to dataset noise.

We further observe that using additional terms with NSS in the discrepancy function,
such as with d = KLD− 0.1CC− 0.1NSS overcomes some of the issues of training with
NSS alone. Table 4, 5 show the comparison of TT vs. NAT for this combined discrepancy
function. A high NSS performance in this case is well-correlated with good performance
in terms of other metrics. Furthermore we note that the performance of NAT is superior to
TT when less gaze data is available, with the gap between the two approaches closing in
with more gaze data. Given our analyses of all of the experiments with various discrepancy
functions and dataset types, our conclusion is that the performance of models trained with
density-based discrepancy functions (e.g., KLD) is better for TT as well as NAT, with NAT
showing consistent superior performance compared to TT.
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

100

5
TT, SGD 2.352 0.244 0.267 2.272 0.761

TT, RMSprop 4.139 0.192 0.056 9.92 0.178
NAT 1.746 0.428 0.230 2.358 0.916

30
TT, SGD 2.302 0.258 0.275 2.661 0.775

TT, RMSprop 3.593 0.247 0.111 13.628 0.423
NAT 1.903 0.398 0.198 2.370 0.919

461

5
TT, SGD 2.777 0.317 0.232 4.464 0.612

TT, RMSprop 4.00 0.241 0.062 14.617 0.206
NAT 1.305 0.575 0.354 3.29 0.929

30
TT, SGD 2.252 0.470 0.355 2.463 0.593

TT, RMSprop 3.526 0.292 0.127 14.048 0.381
NAT 1.402 0.571 0.310 2.933 0.927

Table 3: Comparison of TT (Eq. 2 in main paper) vs. NAT on LEDOV testing set, for TASED
Net, trained with −0.1NSS as discrepancy, and various number of training videos and ob-
servers. The best metric between each set of 3 experiments for a given dataset size (videos
and observers) is in bold and the second-best is italicized. Given the strong overfitting be-
havior of NSS with TT using RMSprop for this particular set of experiments, we report TT
optimized with SGD as well.

train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

30 30 TT 1.652 0.446 0.261 2.269 0.871
NAT 1.243 0.494 0.394 2.491 0.900

100
5 TT 1.368 0.496 0.395 2.430 0.863

NAT 1.149 0.540 0.423 2.782 0.905

30 TT 1.261 0.534 0.368 2.658 0.903
NAT 1.034 0.574 0.432 3.250 0.928

461
5 TT 1.159 0.577 0.485 3.912 0.864

NAT 0.852 0.626 0.513 3.451 0.931

30 TT 0.913 0.626 0.513 5.743 0.910
NAT 0.755 0.688 0.554 3.559 0.930

Table 4: Saliency quality metrics on LEDOV testing set, for TASED Net, training with
KLD-0.1CC-0.1NSS as discrepancy, and various number of training videos and observers.
The best metrics between TT (Eq. 2 in main paper) and NAT are in bold.

train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

30
15 TT 0.687 0.696 0.590 3.618 0.900

NAT 0.588 0.718 0.601 3.629 0.932

31 TT 0.555 0.727 0.609 3.605 0.935
NAT 0.560 0.730 0.612 3.666 0.933

60

5 TT 0.555 0.728 0.615 3.660 0.930
NAT 0.535 0.736 0.612 3.681 0.937

15 TT 0.514 0.743 0.631 3.804 0.931
NAT 0.488 0.755 0.636 3.814 0.939

31 TT 0.502 0.748 0.639 3.887 0.931
NAT 0.503 0.750 0.632 3.774 0.938

Table 5: Saliency quality metrics on DIEM testing set, for TASED Net, training with KLD-
0.1CC-0.1NSS as discrepancy, and various number of training videos and observers. The
best metrics between TT (Eq. 2 in main paper) and NAT are in bold.

5.3 DNN architectures

To further verify that NAT works effectively on different DNN architectures, independently
from the adopted dataset, we train SalEMA [9] on the ForGED dataset. We use KLD as
the discrepancy function, with RMSprop as the optimizer with a learning rate equal to 1e−5

rather than Adam with learning rate 1e−7 and binary cross entropy as discrepancy function,
as suggested by the authors (an analysis of this hyperparameter choice is discussed later).
Consistently with the other cases analyzed here, NAT outperforms TT, notably when the
number of observers or videos is limited (Table 6).
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

30
5 TT 1.229 0.546 0.412 2.911 0.912

NAT 1.187 0.559 0.428 3.050 0.915

15 TT 1.214 0.544 0.420 2.972 0.916
NAT 1.184 0.563 0.426 3.152 0.916

100 5 TT 1.077 0.600 0.444 3.273 0.923
NAT 1.071 0.599 0.447 3.274 0.926

379
2 TT 1.054 0.601 0.447 3.248 0.926

NAT 1.076 0.600 0.440 3.284 0.930

5 TT 1.014 0.623 0.482 3.533 0.929
NAT 1.019 0.623 0.471 3.526 0.930

Table 6: Saliency quality metrics on ForGED testing set, for SalEMA, training with KLD as
discrepancy, and various number of training videos and observers. The best metrics between
TT (Eq. 2 in main paper) and NAT are in bold.

6 Additional training details (mentioned in Sec. 5)

Here we discuss more training additional training details for TASED-Net [10], SalEMA [9],
and EML-Net [3]. The details of training ViNet are already mentioned in the main paper,
Sec. 5. For all models, the code released by authors was used, with changes to reflect the
new hyperparameter settings, specifying NAT loss function and faster data loading.1 For
all experiments, the training was stopped when the validation discrepancy does not improve
for 10,000 iterations. All testing was performed at the original resolution for videos of all
datasets: when the predicted output size is different, the predicted saliency maps were resized
to original resolution.

Hyperparameters for TASED training on LEDOV. To ensure a fair comparison against
traditional training and guarantee that the best performance is achieved for the given archi-
tecture and dataset, we first perform some hyperparameter tuning of TASED on LEDOV with
traditional training (Eq. 2 in main paper). We found that using RMSprop with a learning rate
of 0.001 for KLD optimization gives better performance than the default settings originally
proposed for training on DHF1K (i.e., SGD with momentum 0.9 and learning rate 0.1 for
decoder stepping down by a factor of 0.1 at iteration 750 and 950, and 0.001 for encoder),
as shown in Table 7 and in Fig. 5. Thus, we adopt RMSprop with a learning rate of 0.001
to train TASED for both traditional training and NAT in all the experiments. An exception
to this rule is the traditional training with SGD reported in Table 3, where we adopt SGD
with a learning rate of 0.0001 (any higher leads to training instabilities due to data noise)
and momentum 0.9.

hyperparameter settings KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑
TASED-Net, SGD, learning rate schedule (default) 1.104 0.554 0.452 2.536 0.828
TASED-Net, RMSprop, 0.001, KLD (improved) 0.754 0.724 0.572 4.227 0.921

Table 7: Performance on LEDOV for TASED trained traditionally using KLD with origi-
nal settings, and those used in the main paper (RMSprop, learning rate 0.001) on the full
LEDOV training set. We adopted the best hyperparameter setting (best metrics in bold) for
all experiments. *Original settings: SGD, initial learning rate 0.1 for decoder and 0.001 for
encoder, momentum 0.9.

1ViNet: https://github.com/samyak0210/ViNet, TASED-Net: https://github.com/MichiganCOG/TASED-Net,
SalEMA: https://github.com/Linardos/SalEMA, EML-Net: https://github.com/SenJia/EML-NET-Saliency
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Figure 5: Validation-set performance plots (KLD vs. training iterations) for the LEDOV
dataset during training of TASED with KLD as loss function and LEDOV dataset using:
SGD, with default setting provided by authors; and RMSprop, learning rate 0.001. Based on
this experiment, we choose RMSprop with a learning rate of 0.001 for our experiments.

Hyperparameters for SalEMA training on LEDOV. We train SalEMA [9] on the full
LEDOV dataset with the default choice for loss function and optimizer (Adam optimizer,
binary cross entropy, with learning rate 1e−7), and compare against the adoption of the RM-
Sprop optimizer with KLD as the loss function and 2 learnings rates: 1e−5 and 1e−7 (see
Table. 8). We train with LEDOV training set and we choose the best hyperparameter setting
based on the LEDOV test-set performance for all of the experiments in the paper.

hyperparameter settings KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑
Adam, 1e−7, BCE (original) 1.238 0.511 0.412 2.426 0.894

RMSprop, 1e−7, KLD 1.206 0.532 0.418 2.602 0.900
RMSprop, 1e−5, KLD 1.052 0.612 0.463 3.237 0.912

Table 8: Performance comparisons on LEDOV test set for SalEMA trained with the original
hyperaprameter settings and the ones used in this paper (RMPprop optimizer with 1e−5

learning rate) after training on LEDOV training set. Best metrics are in bold.

Details of training EML-Net. We train EML-Net [3] for image-saliency on our noisy ver-
sion of SALICON train set [6] (generated by randomly selecting a subset 5 or 15 fixations per
image, see Sec. 6 in main paper). To do so, we select the ResNet50 backbone [2]. Consistent
with recommendations from authors, we train two versions of the encoder: first, we finetune
starting from ImageNet-pretrained weights [12], and second, we finetune from Places365-
pretrained weights [16]. The two saliency models obtained from the encoder-training stage
are input to the decoder-training pipeline to give the final image-saliency predictor for EML-
Net approach. We adopt the EML discreapncy (which is a combination of KLD, CC and NSS
losses described by authors) for training both traditionally (Eq. 2 in main paper) and using
NAT. After searching through learning rates and optimizers, we find the author-specified
choices to be most optimal: SGD with momentum with a learning rate of 0.01 at the be-
ginning and multiplied by 0.1 after every epoch. We train both encoder and decoder for 10
epochs. After training, the best model for each experiment in Table 6 of the main paper
is selected based on validation-set performance (using all available fixations on images in
validation set), and submitted to SALICON benchmark for evaluation on the test set [6].
Note that even though the training is performed on few-fixation images to simulate a noisy
version of the SALICON dataset, the evaluation on test set and validation set contains all of
the available fixations.
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7 Alternative methods to estimate x̃ (mentioned in Sec. 6)

In Sec. 6 of main paper, we discuss an alternative strategy using Gaussian kernel density
estimation (KDE) with uniform regularizer to estimate x̃ for training, instead of the com-
mon practice of blurring human gaze fixation locations using a Gaussian blur kernel of size
approximately 1◦ viewing angle. We provide further details here. We estimate the optimal
KDE bandwidth for each video frame, mixed with a uniform regularizer whose coefficient is
also a parameter to be estimated. We do a per-frame estimation of optimal KDE bandwidth
and mixing coefficient, to account for the general case where each frame can have a different
variety of points of interest to attract gaze which cannot be explained with the optimal KDE
bandwidth of another frame. The alternative to this is to estimate an optimal KDE band-
width independent of the video frames, which amounts to the case of obtaining a universal
Gaussian-blur kernel of a different size. In this case, the treatment of the underlying gaze
data for obtaining the measured saliency maps, ˜̃xi, remains the same, in principle, as our
experiments with ∼ 1◦ viewing-angle Gaussian-blur kernel (which amounts to 36 pixels and
1920× 1080 resolution for ForGED). To demonstrate this for completeness, in Table 9, we
show some of the results for TASED trained with ForGED and KLD as discrepancy. For
this experiment, the training gaze maps are estimated using a Gaussian-blur kernel of size
27 pixels (at resolution 1920× 1080), which amounts to ∼ 0.75◦ viewing angle. We note
in Table 9 that NAT outperforms traditional training, consistent with our experiments with
∼ 1◦ viewing-angle Gaussian-blur kernel reported in the main paper.

train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

30

2 TT 1.586 0.471 0.329 2.832 0.878
NAT 1.387 0.546 0.378 3.153 0.879

5 TT 1.358 0.563 0.345 3.184 0.903
NAT 1.239 0.565 0.406 3.272 0.905

15 TT 1.056 0.622 0.483 3.682 0.902
NAT 1.035 0.616 0.476 3.757 0.917

100 5 TT 1.085 0.634 0.464 3.770 0.903
NAT 1.018 0.636 0.474 3.633 0.926

379 5 TT 0.959 0.651 0.480 3.652 0.931
NAT 0.888 0.670 0.517 4.091 0.924

Table 9: Performance comparisons on ForGED test set for TASED trained with KLD as
discrepancy. Instead of computing gaze maps for train set with Gaussian blur kernel of size
approximately 1◦ viewing angle (which amounts of 36 pixels at 1920×1080 resolution), we
use a Gaussian blur kernel of size approximately 0.75◦ viewing angle (27 pixels). As we
can see, the conclusion regarding the superior performance of NAT compared to traditional
training applies independent of blur kernel size.

To estimate the optimal bandwidth using KDE, we optimize a gold-standard model for
saliency prediction, which predicts the probability of fixation for one observer, given the gaze
data from the remaining observers for the video frame (leave-one-out cross-validation) [8,
13]. We observe that, when gaze fixation locations are sparsely distributed across a frame,
the optimal bandwidth for KDE is high, which would result is high-spread, almost-uniform
saliency maps. Independent of the estimation strategy for x̃, we posit that there is an un-
derlying uncertainty / noise in the measured saliency map – which is accounted for during
training using NAT, to obtain improved performance over traditional training.
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Figure 6: Training-set and validation-set KLD as a function of training iterations for TASED
trained on LEDOV (“GT” in the legend indicates “ground-truth”). In contrast to the tradi-
tional training (Eq.2 in main paper), NAT does not overfit.

8 Overfitting behavior with NAT (mentioned in Sec. 3)

Figure 6 shows the training and validation set performance (in terms of KLD) as a function
of the training iteration when training TASED on LEDOV dataset with KLD discrepancy,
for different number of observers and videos in the training set. For both the traditional ap-
proach (dashed orange line) and NAT (dashed purple line), the training-set curves decrease
regularly, as expected in a smooth optimization process. However, the validation-set curves
for traditional training (continuous orange line) quickly reach a minimum and then start di-
verging towards a higher asymptotic value, which is a clear sign of overfitting. On the other
hand, the validation curves for NAT (continuous purple line) are always lower (suggesting
better performance) and tend to stabilize around asymptotic values without growing anymore
— a clear sign, in this case, that overfitting is avoided. Note that for the training-set curves
(dashed lines), the human saliency map used for KLD computation is derived using the lim-
ited number of observers available during the specific training experiment. As an additional
check for the overfitting behavior of traditional training, we plot the performance of training
set when compared against human saliency maps obtained from all the observers available
in the training videos (32). These are indicated with dash-dotted lines. For few-observer
experiments, the performance of traditional training on all-observer evaluations gets worse
with increasing iterations. On the contrary, the performance on validation set, training set,
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and all-observer training set do not generally show signs of overfitting for NAT. Only in few
cases, NAT plots are unstable at the beginning of the training (see the peaks in the validation
curves in the left most panels for 30 observers trainings), but then the curves stabilize to an
asymptotic value. The only exception to this is represented by the upper right panel in the
figure (2-observer training with 461 videos), where we believe that the slight increase in the
validation-set performance value is due to the approximation introduced in NAT to make it
computable in practice. We observed a similar behavior when training on other datasets.

References
[1] Richard Droste, Jianbo Jiao, and J. Alison Noble. Unified Image and Video Saliency

Modeling. In Proceedings of the European Conference on Computer Vision (ECCV),
2020.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. pages 770–778, 2016.

[3] Sen Jia and Neil DB Bruce. Eml-net: An expandable multi-layer network for saliency
prediction. Image and Vision Computing, 2020.

[4] Lai Jiang, Mai Xu, Tie Liu, Minglang Qiao, and Zulin Wang. DeepVS: A deep learning
based video saliency prediction approach. In Proceedings of the European Conference
on Computer Vision (ECCV), 2018.

[5] Lai Jiang, Mai Xu, Zulin Wang, and Leonid Sigal. DeepVS2.0: A saliency-structured
deep learning method for predicting dynamic visual attention. International Journal of
Computer Vision (IJCV), 2021.

[6] Ming Jiang, Shengsheng Huang, Juanyong Duan, and Qi Zhao. Salicon: Saliency
in context. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[7] Tilke Judd, Frédo Durand, and Antonio Torralba. A benchmark of computational mod-
els of saliency to predict human fixations. 2012.

[8] Matthias Kümmerer, Thomas SA Wallis, and Matthias Bethge. Information-theoretic
model comparison unifies saliency metrics. Proceedings of the National Academy of
Sciences, 2015.

[9] Panagiotis Linardos, Eva Mohedano, Juan Jose Nieto, Noel E O’Connor, Xavier Giro-
i Nieto, and Kevin McGuinness. Simple vs complex temporal recurrences for video
saliency prediction. arXiv, 2019.

[10] K. Min and J. Corso. TASED-Net: Temporally-aggregating spatial encoder-decoder
network for video saliency detection. In Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), 2019.

[11] Parag Mital, Tim Smith, Robin Hill, and John Henderson. Clustering of gaze during
dynamic scene viewing is predicted by motion. Cognitive Computation, 2011.



PRASHNANI ET AL.: NOISE-AWARE VIDEO SALIENCY PREDICTION 15

[12] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision
(IJCV), 2015.

[13] Matthias Tangemann, Matthias Kümmerer, Thomas S.A. Wallis, and Matthias Bethge.
Measuring the importance of temporal features in video saliency. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020.

[14] W. Wang, J. Shen, F. Guo, M. Cheng, and A. Borji. Revisiting video saliency: A
large-scale benchmark and a new model. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[15] Niklas Wilming, Torsten Betz, Tim C Kietzmann, and Peter König. Measures and
limits of models of fixation selection. PloS one, 2011.

[16] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
Places: A 10 million image database for scene recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2017.


