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The supplementary materials consist of additional experimental results and implementa-
tion details of comparative methods:

1. We investigate the usefulness of visual observations for object navigation with addi-
tional quantitative experiments (Section 1.1).

2. We study the effectiveness of joint optimization of perception and action by comparing
the proposed method with its counterpart that uses independent optimization (Section
1.2).

3. We study the impacts of attention distribution on action prediction (Section 1.3)

4. We perform ablation analyses on the trainable balance factor to study the dynamics of
attention-action relationship . (Section 1.4)

5. We perform ablation analyses to study the contributions of different components of
our method. (Section 1.5)

6. We provide qualitative results of the proposed method (Section 1.6).

7. We present additional implementation details of different comparative methods dis-
cussed in the main paper, including the Baseline w/ coupling (Section 2.1) and the
Dynamic Mapping method (Section 2.2).

8. We elaborate the details of our experiment settings, including training details of the
agent (Section 2.3), target objects for training and evaluation (Section 2.4), action
space (Section 2.5) and the classification of evaluation environments (Section 2.6).

1 Supplementary Results

1.1 Does Visual Observations Help Navigation?
One of the key challenges preventing the generalization of embodied agents is the visual
variation of different environments. It leads to significant discrepancies between features
extracted from visual observations of diverse environments, causing difficulties for agents to
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Known Semantics Unknown Semantics
SR (%) SPL (%) SR (%) SPL (%)

Baseline 51.31 18.84 34.80 7.80
Baseline w/o feat 46.18 13.34 36.86 7.52

ANA 62.56 22.75 49.85 12.63

Table 1: Comparison between the proposed ANA and different baselines. Following exper-
imental settings in the main paper, experiments are conducted in unseen environments with
known and unknown semantics. Best results are highlighted in bold.

determine their actions. To overcome the generalizability issue, in the main paper we propose
to leverage a new attention mechanism that serves as a compact intermediate state bridging
perception and action, distilling useful visual information while bypassing the direct use of
visual features. In this subsection, we explore and report results with an extreme setting that
completely removes the visual features extracted from the observations.

Specifically, we construct an additional model (Baseline w/o feat) that only utilizes the
contextual information about object relationship for navigation. It is modified from the state-
of-the-art Spatial Context [3] model (our Baseline) by removing the layers that take the visual
features as inputs. We report comparative results in Table 1. Results show that (1) discarding
the visual features leads to slight improvements over the Baseline on the Successful Rate
(SR) in environments with unknown semantics but significantly decreases the performance
on the other evaluation metrics. It shows that while having a heavy reliance on the visual
features from the visual observations limits generalization, completely removing them does
not help much. (2) Instead, by distilling useful information from visual observations into
attention distribution, the proposed ANA shows a significantly improved performance across
various types of unseen environments.

1.2 Does Joint Optimization of Attention and Action Help Navigation?

A key component of the proposed method is the joint optimization of attention and action
through a consistent action space. In Section 4.2 of the main paper, we show that the joint
optimization is more advantageous than implicitly optimization without coupling attention
and action (Implicit Optimization, equivalent to Baseline w/ proposed attention). To gain
more insights of the paradigm, we further compare it with a self-supervised learning method
that also explicitly optimizes attention and action but with separate training objectives (In-
dependent Optimization).

Specifically, this compared method derives attention ground truth based on the predicted
action, and encourages the model to look at regions related to the action. It adaptively con-
structs the attention ground truth αGT

t by multiplying the predicted action likelihood Actt
with spatial masks M ∈ Rk×7×7 that indicate the important regions for different candidate
actions:

α
GT
t =

1
Z ∑

k
Actt ·M (1)

where k represents the number of actions, Z is the sum of attention values for normalizing
the ground truth. The masks are initialized based on the same heuristic used in our method,
and also trained end-to-end for data-driven refinement and improved flexibility.

Following a similar intuition as our method ANA, we encourage the agent to focus on
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Known Sem. Unknown Sem.
SR (%) SPL (%) SR (%) SPL (%)

Implicit Optimization 54.02 17.83 42.58 11.12
Independent Optimization 54.58 17.91 40.67 7.41

ANA 62.56 22.75 49.85 12.63

Table 2: Comparison between methods with different optimization strategies. Best scores
are highlighted in bold.
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Figure 1: Frequency of actions performed by the agent.

the important regions associated with the predicted action:

Latt =− log(∑
w,h

α
GT
t ·αt) (2)

The attention loss Latt is linearly combined with the navigation objective Lnav:

L = Lnav + γLatt (3)

where γ is the balance factor (we empirically define γ = 0.2 to maintain a consistent scale
between the two objectives).

As shown in Table 2, while Independent Optimization slightly outperforms Implicit Op-
timization in environments with known semantics, it leads to a considerable drop of perfor-
mance under the setting with unknown semantics, where the integration of perception and
action plays a more significant role. Without explicitly coupling attention and action for a
joint optimization, the agent does not learn well the relationship between attention and ac-
tion, which is made worse by the unbalanced frequency of candidate actions, i.e., the agent
tends to optimize dominant actions (see Figure 1). Differently, by explicitly coupling atten-
tion with action, our method is less prone to the unbalanced frequency and able to generalize
across various types of unseen environments.

1.3 Does Where to Look Affect Where to Move?
While many efforts have been placed on improving the overall model performance with
attention, less reported the contribution of attention on each prediction. Moreover, several
recent studies [5, 9] in the Natural Language Processing (NLP) community point out the lack
of explainability of attention, and show that altering the attention of language models does
not have significant impacts on their predictions. In this section, we focus on the influence of
attention on predicting actions, and investigate if the same issue exists in object navigation.
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Figure 2: Adaptive values of the balance factor β for different training iterations.

Following [5], we randomly permute the attention computed by the fully trained models,
and record the corresponding changes in action. We perform the experiment on both the
proposed ANA with the new attention, and a baseline model with conventional attention
(i.e., Baseline w/ soft attention). Specifically, the Baseline w/ soft attention model follows the
typical designs of attentive models [1, 2, 4, 6, 8], and incorporates conventional soft attention
with the Spatial Context [3] baseline. By averaging results across different episodes, we find
that in 51.66% of the times Baseline w/ soft attention model changes its action. It suggests
that the influence of attention on the final predictions is task-dependent. Compared to NLP
tasks that require an understanding of a long sequence of words, object navigation with a
few regions of interest tends to have a stronger reliance on attention. Moreover, with the
proposed attention that explicitly integrates perception and action, ANA shows an increased
probability of 70.26%. It indicates that by coupling attention with action, our attention plays
an essential role in guiding the action of agent and boosting the navigating performance.

1.4 Ablation Study on the Balance Factor
Our method takes advantage of a trainable balance factor β (see Equation 8) to determine
the contribution of information from different aspects, i.e., the alignment between attention
and spatial masks for action Actα

t and the cooperation of attention and contextual infor-
mation Actc

t . In Figure 2, we visualize values of the balance factor for different training
iterations. The results show that β increases drastically at the beginning, during which the
agent quickly develops its initial navigation policy. After that, it maintains a slowly increas-
ing trend throughout the rest of the learning process, as the agent iteratively refines its policy.
The overall trend of the balance factor suggests that our method integrates perception and
action in a progressive manner. As the agent develops better understanding of the task, cou-
pling attention with action plays a more and more important role and leads to more accurate
action planning.

1.5 Ablation Study on Different Components
The proposed method jointly considers contextual information and attention distribution.
By mapping attention to the action space (i.e., Actα

t in Equation 3 of the main paper) and
learning discriminative features from both attention and contextual information (i.e., Actc

t
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Figure 3: Qualitative comparison between agents with the conventional attention (Baseline
w/ soft attention) and the proposed attention (ANA). The trajectories of agents are are de-
noted with blue arrow, whose opacity represents the order of actions performed by agents
(the higher the opacity, the later the action takes place). The final targets are highlighted
with blue bounding boxes.

Known Sem. Unknown Sem.
SR (%) SPL (%) SR (%) SPL (%)

ANA 62.56 22.75 49.85 12.63
ANA w/o Actc

t 55.70 20.59 34.96 7.92
ANA w/o Actα

t 54.02 17.83 42.58 11.12

Table 3: Ablation results for different components. Best scores are highlighted in bold.

in Equation 2 of the main paper), it is able to effectively navigate across various visual
environments. In this subsection, we perform an ablation study to study the contribution of
the two components. As shown in Table 3, dropping either component leads to a considerable
loss of performance, which highlights the complementary role of the components and the
integral design of our method.

1.6 Additional Qualitative Results

This subsection provides qualitative analyses between conventional attention and the pro-
posed attention. In Figure 3, we visualize the navigation episodes of agents equipped with
the two different attention. Results show that conventional feature aggregation based atten-
tion (second row of Figure 3) commonly fails to capture the regions of interest, and focuses
on the background instead (e.g., attention for t = 2,10 in the first episode and all three steps
in the third episodes). As a result, the agent has difficulty navigating to the targets, and tends
to collide with different obstacles (e.g., the second and third episodes). On the contrary, in
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Figure 4: Architecture of the Baseline w/ coupling method, a comparative method we use in
the main paper.

the proposed method (ANA, first row of Figure 3), our new attention highlights the potential
directions of the final targets, and is closely correlated with the action. With the guidance
of the proposed attention, our method is able to efficiently locate the targets without running
into collision.

2 Supplementary Method

2.1 Coupling Conventional Soft Attention with Action
This subsection elaborates the implementation details of the Baseline w/ coupling model
used as a comparative method in the main paper. The model (shown in Figure 4) shares a
similar architectural design with the proposed method, with the key difference being the use
of attention, i.e., it uses conventional soft attention for aggregating visual features instead of
our proposed attention as the intermediate state.

Specifically, it first encodes the visual features Vt and context grid Gt independently, and
then concatenates the encoded features V̂t and Ĝt to compute the visual attention αt :

αt = σ( fatt([V̂t ; Ĝt ])) (4)

where fv and fg denote the layers for processing visual features and context grid, fatt corre-
sponds to layers for computing the attention. [·] represents concatenation of features, and σ

is the softmax activation function.
After obtaining the attention, we follow the conventional feature aggregation scheme

[1, 4, 10], and leverage it to adaptively determine the contribution of visual features:

V α
t = ∑

w,h
αt ·Vt (5)

where w and h represent the spatial dimension, · denotes the Hadamard product. The attended
visual features V α

t are then concatenated with the features derived from the context grid for
predicting the unnormalized action likelihood Actc

t :

Actc
t = fact([ f V

act(V
α

t ); f G
act(Gt)]) (6)

where f V
act and f G

act are fully-connected layers for encoding the attended visual features and
context grid, and fact denotes fully-connected layers for deriving the action.
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Known Targets Unknown Targets
Living Room Pillow, Laptop, Television, Garbage Can, Bowl Sofa, Box, Table Top

Bathroom Sink, Toilet Paper, Soap Bottle, Light Switch Toilet, Towel
Kitchen Toaster, Microwave, Fridge, Coffee Machine, Garbage Can, Bowl Mug, Pot, Cup

Bedroom House Plant, Lamp, Book, Alarm Clock Mirror, CD, Cellphone

Table 4: Target object categories for different room types.

Similar to the proposed method, Baseline w/ coupling also couples attention with action,
and determines the final action with the consideration of the alignment between attention and
action templates Actα

t :
Actα

t = ∑
w,h

M ·αt (7)

Actt = σ(Actc
t +β ·Actα

t ) (8)

where M is the spatial masks discussed in the main paper, β is the trainable balance factor,
and σ is the softmax activation function.

Despite integrating perception and action by mapping attention to the action space, as the
conventional feature-aggregation based attention is not directly correlated with action, Base-
line w/ coupling does not bring reasonable improvements and is significantly outperformed
by our method with the newly proposed attention.

2.2 Dynamic Mapping for Integrating Perception and Action
In the main paper, we analyze the effectiveness of different spatial masks through com-
parative experiments. In this subsection, we elaborate the detailed design of the Dynamic
Mapping method used in the analyses. Different from our method that applies the same set
of masks across different environments, it dynamically determines the masks for each time
step based on visual observations and contextual information between objects.

The model shares a similar design as the proposed ANA, except having an additional
dynamic mapping module for computing the spatial masks. Given the visual features Vt
extracted from the four most recent observations and the context grid Gt encoding object re-
lationship, the module first independently encodes the two types of features with a sequence
of convolutional layers and pooling layers. After obtaining the encoded features V M

t and
GM

t of a consistent spatial dimension, the spatial masks Mt for the current time step t are
computed as:

Mt = σ( fM([V M
t ;GM

t ])) (9)

where fM is a convolutional layer for computing the masks, [·] denotes the concatenation
operation, and σ is the Sigmoid activation function.

While taking into account the dynamics of environments, due to the absence of prior
knowledge about the relationship between attention and candidate actions, the Dynamic
Mapping method is not as effective as the proposed ANA that incorporates both prior knowl-
edge and environment dynamics.

2.3 Optimization
Our agent is trained under the Asynchronous Advantage Actor-Critic (A3C) [7] algorithm
using 6 threads, with a mixture of rewards defined in [3]. We train the agent with 25 millions
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w/ obstacles

Obstacle-free

Figure 5: Examples of environments in w/ obstacles and Obstacle-free groups.

Environment ID
w/ obstacles 22, 30, 224, 226, 228, 230, 322, 326, 330, 426
Obstacle-free 24, 26, 28, 222, 324, 328, 422, 424, 428, 430

Table 5: Environment IDs for environments in different groups.

iterations using the RMSProp optimizer. The learning rate is initialized as 7× 10−4, and
decreases linearly till 0 at the last iteration.

2.4 Target Objects

The target objects in our experiments are determined based on previous state-of-the-art
[3, 11]. For the setting with Unseen environments with known semantics, the target objects
for training and evaluation are consistent, i.e., Known Targets in Table 4. In terms of set-
ting with Unseen environments with unknown semantics, the target objects for evaluation
(Unknown Targets in Table 4) are determined by selecting objects closest to training targets
(Known Targets) on the word embedding space. This allows us to evaluate the effectiveness
of agents on navigating to semantically relevant objects.

2.5 Action Space

Following [3], the action space in our experiments consists of 9 unique actions, which are
defined as follows:

• Move Ahead, Move Back, Move Left, Move Right: these actions will move the
agent to the corresponding direction for a single step (i.e., 0.5 meter).

• Rotate Left, Rotate Right: the two actions that rotate the agent to the corresponding
directions for 90 degrees.

• Look Up, Look Down: these two actions will not move the agent, but instead will tilt
its camera up or down for 30 degrees.

• STOP: a special action for terminating an episode.
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2.6 Classification of Environments
To study the influence of environments on the relationship between attention and action, in
the main paper we performed an analysis with two groups of environments (i.e., w/ obsta-
cles and Obstacle-free). This subsection visualizes exemplar environments for both groups
(Figure 5), and lists the complete assignment for all evaluation environments (Table 5). The
classification was determined based on examining the amount of free-space in an environ-
ment from a top-down view.
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