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0.1 Ablation Study
Features Combination Methods. Modern architectures of deep learning solutions for the
salient object detection problem are based on encoders, decoders, and shortcut connections
between them. Each layer of the decoder is responsible for combining features from the
deeper layer of the decoder and the corresponding layer of the encoder. Some proposed
solutions like [1, 3] even get additional feature representations from deep layers as global
guiding information. There are two main approaches to use that information. The first one is
by simply concatenating them, the second one is to fuse them by using other functions like
multiplication or addition. Another very important thing is the features processing structure
at every layer of the decoder. Methods like [1, 4] prefer to process encoder’s and decoder’s
features separately and then fuse them by using multiplication.
We tried to find out the answers to two main questions

• How the features of the encoder and decoder need to be processed. (joint or separated)

• How they need to be combined. (fusing or concatenating)

To answer these questions, we proposed two main structures of a decoder’s layer Figure 1.
We designed a PipeMode layer, which is a joint processing of two feature representations,
and BranchedMode layer, which is separated processing of the features. They both contain
two aggregation functions R1 and R2.
The corresponding features of encoding layers, f (i)l contain low-level information like edges,
tiny areas, and high-frequency data, which is crucial for high-quality detection, especially
on edges and they contain a lot of noisy information. The feature representations of decod-
ing layers, f (i)h contain noisy free high-level information like class, position, or shape of the
object.
These features representations helped Jun Wei et al. [4] to propose a solution like our
BranchedMode, where they used multiplication function to fuse high and low-level features
and to clean noisy parts, then they added a skip-like connection as complementary informa-
tion. We find this approach has some drawbacks, because of the choice of the structure and
aggregating functions, so we assume

• As shown in work [2], feature values become smaller in deeper layers, the fused feature
values can be pushed to zero, because of the multiplication aggregation function and
the counteracting weights usually initialized randomly around zero. As the feature
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Figure 1: An overview of our proposed structures for a layer of a decoder. (a) is the joint-
features module and we called it PipeMode and (b) is the separated-features module and we
called it BranchedMode. R1 and R2 are aggregation functions

values are close to zero, the gradients also are close to zero and the network will learn
slowly or will not learn at all.

• Based on our setup, the joint learning ((a) in Figure 1) gives better results than sep-
arated learning ((b) in Figure 1), because of the sharing information during feature
representation processing.

To find out the real behavior of these two approaches, we made different experiments with
these structures by using different aggregating functions. We designed a regular and simple
architecture for semantic segmentation, which consists of a ResNet50 encoder, our proposed
two structures as the decoder’s layers, and shortcut connections between them. The binary
cross-entropy loss function was used on top of the first layer of the decoder. Each model was
trained three times with randomly initialized weights and the result was calculated by taking
the average of the best results at each run. In Table 1 we show the results of our experiments.
Based on those results and the architecture choice, we can say:

• In general, PipeMode gives better results than BranchedMode, which shows that the
sharing of information about different features leads to better results.

• The concatenation aggregation function works better for both structures.

PipeMM results are missing in Table 1, because it disturbs the training of the model with
activation values pushed to zero [2].
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Name R1 R2 MAE mF Eξ

BranchPP Plus Plus 0.0356 0.8514 0.9162
BranchMM Mul Mul 0.0358 0.8496 0.9165
BranchCC Cat Cat 0.0353 0.8535 0.9168
BranchMP Mul Plus 0.0353 0.8509 0.9152

PipePP Plus Plus 0.0348 0.8528 0.9164
PipeMM Mul Mul - - -
PipeCC Cat Cat 0.0342 0.8512 0.9171
PipeCP Cat Plus 0.0347 0.8520 0.9159

Table 1: Results of our proposed structures on DUTS-Test dataset with different aggregat-
ing functions, where Plus is addition, Mul is multiplication and Cat is concatenation. The
green is the overall best result, red is the overall worst result, blue is the best result among
BranchedModes, orange is the best result among PipeModes.
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