
1 Appendix A: Algorithm
Algorithm box 1

Algorithm 1: A single query round of Pretext-based Active Learning (PAL)
Result: Set of additional samples to be labeled DQ
Data: Labeled pool DL := {XL,YL}, unlabeled pool DU := {XU}, query size N
Set: Num. epochs EQ and ES, num. sub-queries K, task network fθ , Scoring
network with 2 heads gφ and hψ

# Training task and scoring networks
for t ∈ {1, . . . ,EQ} do

for {xl ,yl} ∈ DL do
θ ← θ −η∇θL( fθ (xl),yl) # Task network, L represents cross-entropy loss
ψ ← ψ−η∇ψL(hψ(xl),yl) # Scoring network
for i ∈ {0,1,2,3} do

φ ← φ −η∇φL(gφ (rot90i(xl)), i) # Scoring network
for xu ∈ DU do

Use g,h to compute and save SS(xu), SC(xu)
# Diversity-based sub-query sampling
Initialize: DQ = /0;φ ′ = φ

for k ∈ {1, . . . ,K} do
for n ∈ {1, . . . , N

K } do
if k == 1 then

xq← arg min
xu∈DU

SS(xu)+λ1SC(xu)

else
xq← arg min

xu∈DU
SS(xu)+λ1SC(xu)+λ2SD(xu)

DQ←DQ∪
{

xq
}

DU ←DU −
{

xq
}

for t ∈ {1, . . . ,ES} do
for xq ∈ DQ do

for i ∈ {0,1,2,3} do
φ ′← φ ′−η∇φ ′L(gφ ′ (rot90i(xq)), i)

for xu ∈ DU do
Use gφ ′ to compute and save SD(xu)

Get oracle to label DQ and update DL

2 Appendix B: Sampling New Classes
In Section 4.3 we evaluated PAL in the setting when new classes are introduced on-the-fly
during the active learning based sampling. We started of with a biased initial pool where
some of the classes are removed in the initial labeled data pool. Here we show the results
in the same setting on a segmentation task on Cityscapes dataset. Out of the 19 classes in
Cityscapes dataset, we removed the annotations of the bus and the train classes from the
initial labeled data pool. For clarity, all further query rounds have access to all the class
annotations.
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Figure 1 compares the mean Intersection over Union (mIoU) of PAL when applied on the
task of semantic segmentation with random sampling in this setting. PAL is able to improve
its mIoU quickly because it is able to sample more images with higher area of missing
annotations compared to random sampling, as shown in Fig 4 in the main paper.

Figure 1: PAL performance with biased initial pool of only seventeen out of nineteen classes:
The mean Intersection over Union (mIoU) of PAL trained with biased initial pool improves
quickly as compared to that of random sampling

3 Appendix C: Hyperparameters

Using validation, the relative importance hyperparameters (λ1,λ2) in Equation 4 of the main
paper were selected from {0.5 , 1.0}. Learning rates were in the range [10−1,10−4]. Op-
timizers were selected from {ADAM, SGD}. The hardware included an NVIDIA GeForce
GTX 1080 GPU running CUDA 10.2 and cuDNN 7.6 using PyTorch.

We share the hyperparameters used for training the task and the scoring models for our
different experiments in Table 1. All hyperparameters were obtained through a grid search.
The hyperparameters λ1 and λ2 of Equation 4 in Section 3.3 were selected from {0.5 , 1.0}.
Learning rates αT for the task model and αS for the scoring model were selected from the
range [10−1,10−4]. Optimizers were selected from {Adam, SGD}.

Dataset αT αS

task &
scoring
model
epochs

batch
size λ1 λ2 optimizer

CIFAR-10 0.01 0.01 100 64 1 1 SGD
SVHN 0.01 0.01 100 64 1 1 SGD

Cityscapes 0.01 0.01 50 8 0.5 0 SGD
Caltech-101 0.01 0.01 100 32 1 1 SGD

Table 1: Parameters for experiments on various datasets
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4 Appendix D: The Hybrid Score

Proposition 1: Negative of KL-divergence of a class PMF from a uniform distribution can
overshadow the confusion score from SS, but entropy cannot.
Proof: Consider a binary classification problem for analysis, with p as the predicted proba-
bility score by the task network for the correct class. When the unlabeled sample is almost
correctly classified with p→ 1, we get the following for the hybrid confusion score:

S(xu) = SS(xu)+λSC(xu)

lim
p→1

S = lim
p→1

(
SS−

λ

2
log
(

1
2p

)
− λ

2
log
(

1
2(1− p)

))
= SS−

λ

2
log
(

1
2

)
− λ

2
lim
p→1

log
(

1
2(1− p)

)
=−∞.

On the other hand, if SC is replaced by the entropy of the PMF hψ , then the hybrid score SE
would be finite because:

lim
p→1

SE = lim
p→1

(SS−λ p log(p)−λ (1− p) log(1− p))

= SS−0−λ lim
p→1

(1− p) log(1− p)

= SS−λ lim
p→1

log(1− p)
1

(1−p)

= SS,

using L’Hôpital’s rule to equate the second term to 0. �

An added advantage of using a multi-task setting for the scoring network is getting better
ordinal estimates of a true latent score due to an ensemble-like effect, as long as the corre-
lations between the two components of the score and their correlation with the underlying
score are positive. This can follow from the following proposition:

Proposition 2: There exists a trade-off parameter that maximizes the correlation be-
tween the true underlying score and the hybrid score, which is greater than or equal to the
correlation of the true score with either of the components, as long as all correlations be-
tween the scores are positive.
Proof: Note that the requirement of a positive correlation is only a weak one for any reason-
ably trained networks gφ and hψ , as we empirically show in Table 1 in the main paper. Now,
without loss of generality, let us assume that some monotonic transformations of the true
underlying score, the self-supervision score, and the classification score give standardized
random variables u, v, and w respectively, such that their means µu = µv = µw = 0, and their
variances σ2

u = σ2
v = σ2

w = 1. Further, we assume that the covariances σuv, σuw, and σvw are
positive. Let an analog of the hybrid score s be a positive combination of the two given by
s = αv+

√
1−α2w, where α ∈ [0,1] has a monotonic relation with the λ ≥ 0 in the jybrod

score , and the variance σ2
s = 1. Then, the correlation between u and s, which is the same as

the cosine between them, is E [u.s] = ασuv +
√

1−α2σuw. If we maximize this correlation
by setting its derivative with respect to α to zero, we get:
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dE [u.s]
dα

= 0

=⇒ d
dα

(
σuvα +σuw

√
1−α2

)
= 0

=⇒ σuv +
−α√
1−α2

σuw = 0

=⇒ σ
2
uv(1−α

2) = σ
2
uwα

2

=⇒ α =± σuv√
σ2

uv +σ2
uw

Clearly, a maxima for E [u.s] exists, because its second derivative is negative for α∗ =
+ σuv√

σ2
uv+σ2

uw
when the covariances are positive, and α∗ ∈ (0,1). �

5 Appendix E: Robustness to scoring network architecture
We observed that changing the backbone architecture of the scoring network (for ex. from
ResNet-18 to VGG-16) does not cause a significant change in the performance of PAL, as
shown in Figure 2.

Figure 2: A change in the backbone architecture of the scoring network has no significant
effect on the performance of PAL on SVHN
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