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Section 1 reports additional results on the test set of Something-Something v1&v2. Sec-
tion 2 presents more ablative study results of GTA. Section 3 elaborates on GTA that is
designed for better temporal modeling. Section 4 shows more visualization results of global
temporal attention weights, transformed regions and swapped attention. Finally, Section 5
provides dataset-specific implementation details on training and testing.

1 Testing Results on Something v1&v2

We compare the performance of our approach on the test set with the state-of-the-art meth-
ods on Something-Something vl & v2 datasets. As is shown in Table 7, our approach based
on 2D RestNet-50 with TSM backbone achieves 49.8% and 66.9% on SSv1 and SSv2 at
top-1 accuracy, respectively. Although on SSv1 dataset, it is still below the TSMRGB+Flow»
TSMRraGB+Flow 1S based on the two-stream network and utilizes additional optical flow infor-
mation. With only RGB input, our GTA achieves the best performance among the recently
proposed STM [7] and bLVNet-TAM [3] on 2D CNN backbone; I3D+NL+GCN [11] and
TEA [8] on 3D CNN backbone.
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Method Backbone Frames SSvl SSv2
TRNggB+riow [13]  BNInc 8+8  40.7 56.2
TSM [9] 2D R50 16 46.0 64.3
TSMgaB+row [91 2D R50 16+16 50.7 66.6
STM [7] 2D R50 16  43.1 63.5
bLVNet-TAM [3] 2D R101 64 489 -
ECOg, Lite [14] BNInc+3D R18 92 423
I3D+NL+GCN [11] 3D R50 32 450 -
TEA [8] 3D R50 16  46.6 632
GTAg, 2D R50+TSM  16+8 49.8 66.9

Table 7: Results on the test set of Something-
Something v1 & v2 datasets.

2 More Ablative Studies

Impact of inserting positions and number of blocks Table 8§ explores the performance
of different inserting positions and the number of blocks inserted. We see that even a sin-
gle GTA block inserted at ress or ress can bring significant improvement over the baseline.
However, the enhancement on ress is relatively minor. We hypothesize that the final residual
stage loses too much fine-grained spatial information, which may hinder the learning of tem-
poral attention at the pixel-level and the region-level. Following the common practice [12],
our full model inserts five GTA blocks to leverage the complementary information provided
by different residual stages and achieves the best result.

Comparison with Temporal Attention with Positional Embedding (TAPE) Our GTA
module is more effective in temporal modeling than TAPE because it not only considers the
chronological order of video frames but also models the temporal relationships among them.
Results in Table 5 of the main paper show that GTA outperforms TAPE by 2.2% on SSvl.
Here, we provide a side-by-side comparison between TAPE and our Pixel GTA (without
applying GTA to regions) in Table 9. Our Pixel GTA consistently outperforms TAPE under
different settings. Furthermore, TAPE can also benefit from our cross-channel multi-head
(CCMH) design, but Pixel GTA still achieves the best performance.

Impact of number of regions. We conduct experiments on the impact of the number of
regions used in RegionGTA in Table 10. We can see that when increasing the number of re-
gions from C/32 to C (C is the channel dimension of the feature map), the accuracy increase
first and reach the peak when K = C/8. More importantly, our RegionGTA consistently
outperforms the model without RegionGTA under different values of K, which proves the
effectiveness of our RegionGTA design.

Comparison on cross-channel multi-head (CCMH) and multi-head. In Table 11, we
compare the performance of cross-channel multi-head and multi-head. We can see that the
accuracy drops by 0.5% when the cross-channel design is removed from CCHM. It demon-
strates that the channel interaction is also critical to help improve the accuracy of the action
recognition task.
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res; res, ress ‘ Top-1
| 170 Model wio CCMH  w/ CCMH
+1 46.2 +TAPE 46.5 472
+1 46.4 + Pixel GTA 48.0 485
+1 37.4
+1 + 495 +SA + TAPE 48.4 48.8
+2 +3 50.6 +SA + Pixel GTA 49.1 49.6
Table 8: Impact of insert- Table 9: Ablation on positional embed-
ing positions and number of ding (TAPE) and cross-channel multi-
blocks. head (CCMH) design.

Model | Top-1

f Regi RegionGTA 2 Cl4 1 2
Number o eglons‘w/o egionG’ C C/2 C/4 C/8 C/16 C/3 Cross-channel Multi-head 50.6

Top-1 ‘ 49.6 49.7 50 503 50.6 50.3 50.1 Multi-head 50.1

Table 10: Impact of number of regions. C denotes the Table 11: Comparison on
channel dimension of the feature map. Top-1 accuracy  cross-channel multi-head and
on SSv1 validation dataset are reported here. multi-head.

3 Relations to Prior Work

Our proposed decoupled framework and the cross-channel multi-head (CCMH) design are
the two key differences between GTA and the prior work (GloRe [2]). Specifically, our Re-
gion GTA generates semantic regions within each frame and performs temporal modeling
on each region individually along the time axis. In contrast, when applied to spatio-temporal
data, GloRe projects the whole 3D feature maps into semantic groups and models the in-
teractions among them. We argue that this kind of grouping and modeling is not capable
of capturing effective temporal relationships across different time steps. Moreover, GloRe
leverages graph convolution to model node-wise interactions, which only considers infor-
mation diffusion on each channel. Our GTA incorporates channel interactions to further
improve temporal modeling, and we show its effectiveness in the experiments.

4 More Visualizations

Visualization of Global Temporal Attention Weights We provide visualization of the
global temporal attention weights on two different datasets, Something-Something v1 and
Kinetics-400 in Figure 5. Specifically, we average the learned global temporal attention
weights across different groups and heads, and visualize the absolute value of attention
weights. The darker colors represent larger values of weights. We can see that global at-
tention weights of K400 and SSv1 are visually different. For SSv1, it tends to focus more
on the latter part of the frames, while for Kinetics-400, the global temporal attention weights
tend to focus more on the middle part of the frames. Our hypothesis is that because there
are many action classes "pretending to do something", thus the latter part of the action are
of vital importance to distinguish from "pretending to do something" vs "doing something".
For example, for "pretending to pick something up" and "picking something up" actions,
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Figure 5: Visualization of global temporal attention weights on Something-Something v1
and Kinetics-400 datasets. Different columns represent timestamps of input from 1 to 8 and
different rows represent timestamps of output from 1 to 8. Darker colors represent larger
values of weights.
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Figure 6: Visualization of the transformed regions of two examples: (a)“Turning the camera
downwards while filming something"; (b)*“Uncovering something"; (c) “Picking something
up". The first row is the frame sequences. The second and third rows are regions obtained
by Region GTA.

whether the object has been picked up eventually decides the action type. In addition, the
global temporal attention weights are not flat across different timestamps, which verifies the
effectiveness of our proposed GTA architecture.

Visualization of Transformed Regions We present visualization of the transformed re-
gions in Figure 6. We can see that Region GTA can discover regions that share similar se-
mantic meanings. For example, in the first video, the “ground” region and the “badminton”
region are automatically identified, the “paper" and the “edge" are detected in the second
video, and the “green gum" and the “hand" are obtained in the third video.

Visualization of Swapped Attention To further verify that different context information
is needed for spatial and temporal attention, we present the visualization of the swapped at-
tention maps in Figure 7. Specifically, we swap the attention functions (i.e., query/key/value
projections) of the spatial and temporal attention blocks and visualize the attention maps.
We can see that after swapping the spatial and temporal attention functions, the generated
temporal attention maps focus more on the frames with similar objects instead of the frames
that are useful for recognizing the action.
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Figure 7: Visualization of the attention maps of three examples: (a)“Moving something up";
(b)“Tearing something into two pieces"; (c)‘“Picking something up". The first row is the
spatio-temporal attention map generated by the non-local module. The second and third row
is the spatial and temporal attention map obtained by our decoupled non-local module. The
fourth and fifth row is the spatial and temporal attention map generated by swapping the
attention functions of the spatial and temporal attention block. The red cross mark denotes
the query position.

©)

For example, in Figure 7(a), the temporal attention weights are larger in the first two
frames which share a similar appearance with the same query position (i.e., the pen). More-
over, the spatial attention maps generated by the temporal attention functions also show
substantially different patterns than the original ones. The visualization results further ver-
ify that different types of context information needed in spatial and temporal attention are
captured in the decoupled non-local module.

5 Experiment Details

Something-Something v1&v2 [6] For the experiments based on the 2D CNN backbone,
we follow the same sampling strategy as TSN [10] to sample 8 frames from the whole
video. The same data augmentation is applied as TSN, which first resizes the input frames
to 240320, followed by the multi-scale cropping and random horizontal flipping. Note that
we do not flip the clips which include the words “left" or “right" in their class labels (e.g.,
“pushing something from right to left"). We train the model for 50 epochs and start with
a base learning rate of 0.01 with a batch size of 32. The first 2 epochs are used for linear
warm-up [5] and the learning rate is reduced by a factor of 10 at 30, 40, 45 epochs. The
backbone network is initialized with ImageNet pre-trained weights. For testing, we resize
the input images to 240x320 pixels and center crop 224 x 224 pixels region. We sample 1
clip from each video for the experiments using 2D backbones.

For the experiments based on the 3D CNN backbone, we employ the same training and
testing strategy as SlowFast-16x8-R50 [4]. We sample 16 and 64 frames for the slow and
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fast pathways, respectively.

Kinetics-400 [1] For the experiments using 2D CNN backbones, we adopt R2D-50 as
the backbone and use 8 frames as input. The model is initialized with ImageNet pre-
trained weights and trained with step-wise learning schedule following the PySLowFast
codebase [4]. For the experiments using 3D CNN backbones, we use SlowFast-8 x8-R101
that samples 8 and 32 frames for the slow and fast pathway, respectively. We first train the
backbone model on Kinetics-400 and then fine-tune it with GTA, following the same practice
for training the non-local blocks [4]. We sample 10 clips temporally and 3 crops spatially
from each video for testing.
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