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1 Additional Implementation Details

This section clarifies some details regarding the losses in the training objective of viewpoint
encoder E3p (section 3.4).

1.1 Training Objectives
Reconstruction Losses for E3p. As mentioned in section 3.4 of the paper, the training

objective for the viewpoint encoder E3p is given by
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where ¢;;, and /3p represents the following combination of different reconstruction losses:
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where, Ayuq =5, Aig = 0.5, Aedge =30, Apiew = 0.25 and Ay, = 1. We use the perspective
camera model in the renderer ¢, with an empirically selected focal length for the 3D-2D pro-
jection. The term £;,, is a MSE between 2D projections of facial landmarks of the predicted
mesh and pre-computed landmarks in sharp images. Qp.se; projects the 3D landmark ver-
tices of the reconstructed mesh onto the image (obtaining 68 facial landmarks), and Q;page
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Figure 1: Qualitative sample on real-world motion blurred face. The first column cor-
responds to the blurry input image. All the other columns are output sequences rotated by
a different amount. Rows from 1 to 5 correspond to the appropriate frame in the output se-
quence. The last column is the copy of the previous one with rectangles on top of different
facial regions. Rectangles are at a fixed location with respect to the image in all frames. Note
how the both eyes and the nose move upwards as we go from the top to the bottom.

extracts landmarks using the method of [1] from the ground-truth targets. L, ensures
that the identity, texture, and expression parameters of the BFM are consistent across views
for samples of our multi-view dataset.

2 Additional Qualitative Results

A real-world deblurring example is presented in Figure 1. Some more qualitative examples
of our multi-view reconstructions on VIDTIMIT[2] can be found in Figures 2 and 3.
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Figure 2: Qualitative samples on VIDTIMIT. The first column corresponds to the blurry
input image. All the other columns are output sequences rotated by a different amount. Rows
from 1 to 5 correspond to the appropriate frame in the output sequence.
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Figure 3: Qualitative samples on VIDTIMIT. The first column corresponds to the blurry
input image. All the other columns are output sequences rotated by a different amount. Rows
from 1 to 5 correspond to the appropriate frame in the output sequence.
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