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This is supplementary material primarily contains:

• Additional classification results

• More ablation studies

• Robustness results for all model variations

• Connection to mini-batch discrimination

1 Additional Classification results

1.1 Training plots

(a) (b) (c) (d)
Figure 1: We encourage the reader to zoom-in on the PDF. The plots show training and test accuracy
versus epochs, for different models on the CIFAR-10 dataset using ResNet-50 encoder. The epochs
axis is on a log scale. (a) training accuracy for MBSGs, (b) test accuracy for MBSGs, (c) training
accuracy for attention MBSGs, (d) test accuracy for attention MBSGs.

Figure 1 compares the training and test accuracy of all the models, with the standard
supervised baseline versus the number of epochs on the CIFAR-10 dataset. The MBSG
models train faster than the standard network, giving a significant performance difference
during early parts of the training process.
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1.2 More ablation studies
In this section, we provide classification results while changing certain hyperparameters of
our model. We perform all these experiments on CIFAR-10 dataset using a ResNet-50 base
encoder and a single layer MBSG with batch size 256 and neighborhood size k = 16.

Attention heads: Different number of attention heads (N) for the Attn-MBSG model.
Table 1 shows that increasing number of attention heads up to three improves performance,
after which it plateaus. Our experiments show that N=3 leads to optimal performance.

Model N=1 N=2 N=3 N=4 N=5
Attn-MBSG (dropfeat) 94.60 94.89 95.05 95.03 95.04

Table 1: Image classification results on CIFAR-10 using a Resnet-50 encoder and an Attn-MBSG,
with different number of attention heads N.

Weighted Addition: Different values for the weighted addition parameter β for com-
bining self and neighbor information. Table 2 shows that as β increases, the performance
increases until it reaches an optimal value, and then it starts decreasing. The optimal value
from our experiments was found to be β = 0.5.

Model β=0.0 β=0.25 β=0.50 β=0.75 β=1.0
MBSG (sum) 85.45 93.42 95.02 94.83 94.44
Attn-MBSG (sum) 86.10 93.82 94.95 94.91 94.30

Table 2: Image classification results on CIFAR-10 using a Resnet-50 encoder and an MBSG using
weighted addition, with different values for β .

Drop Feature: Different values for the drop feature probability p for selecting either
self or neighbor information. Table 3 shows that as p increases, the performance increases
until it reaches an optimal value, and then it starts decreasing. The optimal value from our
experiments was found to be p = 0.5.

Model p=0 p=0.25 p=0.50 p=0.75 p=1
MBSG (dropfeat) 85.40 93.90 95.24 94.90 94.44
Attn-MBSG (dropfeat) 86.10 94.10 95.05 94.80 94.30

Table 3: Image classification results on CIFAR-10 using a Resnet-50 encoder and an MBSG using
drop feature, with different values for p.
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1.3 Results for WideResnet
Table 4 provides results for our MBSG with all the combine options, using Wide ResNet-28-
10 as the encoder network. We also use this network for all the baselines in this table. We
observe a consistent improvement across all datasets, which is consistent with the results of
our experiments using ResNet-50 in the main paper.

CIFAR 10 CIFAR 100 MIT 67
Model Inductive Transductive Inductive Transductive Inductive Transductive
Supervised vanilla 95.62 ±0.14 79.58 ±0.20 66.20 ±0.19

Supervised contrastive [6] 95.91 ±0.16 80.15 ±0.15 66.89 ±0.17

Affinity supervision [10] 95.59 ±0.18 79.8 ±0.19 66.8 ±0.16

MBSG (concat) 96.02 ±0.21 96.05 ±0.20 80.18 ±0.18 80.20 ±0.18 66.87 ±0.22 66.90 ±0.21

MBSG (sum) 95.78 ±0.15 95.80 ±0.14 79.85 ±0.17 79.88 ±0.15 66.52 ±0.18 66.51 ±0.17

MBSG (dropfeat) 96.14 ±0.16 96.17 ±0.18 80.46 ±0.21 80.45 ±0.20 67.10 ±0.19 67.12 ±0.20

Attn-MBSG (concat) 95.95 ±0.15 95.95 ±0.18 80.22 ±0.20 80.23 ±0.19 66.96 ±0.18 66.98 ±0.18

Attn-MBSG (sum) 95.89 ±0.19 95.91 ±0.18 80.02 ±0.20 80.06 ±0.18 66.67 ±0.16 66.69 ±0.17

Attn-MBSG (dropfeat) 96.12 ±0.20 96.14 ±0.21 80.76 ±0.17 80.76 ±0.15 67.25 ±0.22 67.26 ±0.20

Table 4: Image classification results using a Wide ResNet-28-10 encoder. The architectures are trained
using a batch size of 256 and with k = 16 for CIFAR-10, and k = 4 for CIFAR-100 and MIT67. We
provide results for different combine modes of our single layered mini-batch graph based models (rows
4-9).
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2 Additional robustness results

2.1 Random Perturbations
We provide results for Gaussian noise and Gaussian blurring perturbation for all the different
variations of the MBSG models, using the ResNet-50 encoder on the CIFAR-10 dataset. Fig-
ure 2 and 4 show some sample CIFAR-10 images, with different levels of corruption severity
for visualization. For both Gaussian noise and Gaussian blurring we define corruption sever-
ity as the standard deviation, σ used when sampling from the Gaussian distribution, with
higher values of σ corresponding to increased corruption.

Figure 3 shows the average test accuracy for different levels of Gaussian noise and Figure
5 shows the average test accuracy for different levels of Gaussian blurring. In both figures,
the top row shows plots for MBSG models (concat, sum and dropfeat) and the bottom row
shows plots for Attn-MBSG models (concat, sum and dropfeat). Models using MBSGs
(purple) maintain higher accuracy over the entire range of corruption severities as compared
to the baseline model (blue) and show a lower drop in accuracy for higher corruption levels.
We also observe that the sum combination method generally performs better than the other
variations.

2.2 Effect of neighbourhood size on robustness
We study the effect of the neighbourhood size on the robustness of the model we look at
the our MBSG (sum) models performance when fix a corruption severity for both Gaussian
noise and Gaussian blurring and change the number of neighbours k.

Corruption type (Corruption Severity) k=0 k=4 k=8 k=16 k=32
Gaussian Blurring (Blur intensity = 1) 89.60 90.20 90.61 91.63 91.82
Gaussian Noise (Standard deviation = 0.1) 19.10 22.32 26.81 34.82 36.27

Table 5: Image classification results for corrupted images on CIFAR-10 using a Resnet-50 encoder
and an MBSG (sum), with different values for k.

Table 5 shows that the performance is indeed directly proportional k. Hence, the error
should be inversely proportional to k as claimed in Proposition 1.

2.3 Black-box Adversarial Attacks
We provide histogram plots of the number of queries required until a successful attack (over
1000 images) for all the variations of the MBSG model. Figure 6 and 7 show the plots for
SimBA [3] and Bandits-TD [4], respectively. The dashed lines indicate the median value and
the dotted lines indicate the mean value for the different models. In both figures, the top row
shows plots for MBSG models (concat, sum and dropfeat) and the bottom row shows plots
for Attn-MBSG models (concat, sum and dropfeat). The performance across the different
combination methods is similar, although dropfeat models generally have a higher number of
mean and median queries, due to the heavier tail in the distribution. Also, the MBSG models
with attention mechanism have a lower number of mean and median queries on average than
the models without attention.

Citation
Citation
{Guo, Gardner, You, Wilson, and Weinberger} 2019

Citation
Citation
{Ilyas, Engstrom, and Madry} 2019



MONDAL, JAIN, SIDDIQI: MINI-BATCH SIMILARITY GRAPHS (SUPP.) 5

Figure 2: Sample images from the CIFAR-10 dataset with each column showing an increasing level
of corruption severity, for pixelwise Gaussian noise.

(a) MBSG, concat (b) MBSG, sum (c) MBSG, dropfeat

(d) Attn-MBSG, concat (e) Attn-MBSG, sum (f) Attn-MBSG, dropfeat

Figure 3: Average test accuracy at different corruption severities for Gaussian noise on CIFAR10,
using ResNet-50 with MBSGs (top) and ResNet-50 with Attention MBSGs (bottom). Models using
MBSGs (purple) maintain higher accuracy over the entire range of corruption severities as compared
to the baseline model (blue), and show a lower drop in accuracy for higher corruption levels.
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Figure 4: Sample images from CIFAR-10 dataset with each column showing increasing level of
corruption severity for Gaussian blurring.

(a) MBSG, concat (b) MBSG, sum (c) MBSG, dropfeat

(d) Attn-MBSG, concat (e) Attn-MBSG, sum (f) Attn-MBSG, dropfeat

Figure 5: Average test accuracy at different corruption severities for Gaussian blurring on CIFAR10,
using ResNet-50 with MBSGs (top) and ResNet-50 with Attention MBSGs (bottom). Models using
MBSGs (purple) maintain higher accuracy over the range of corruption severities as compared to base-
line model (blue) and have lower drop in accuracy for higher corruption levels.
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(a) MBSG, concat (b) MBSG, sum (c) MBSG, dropfeat

(d) Attn-MBSG, concat (e) Attn-MBSG, sum (f) Attn-MBSG, dropfeat

Figure 6: Histogram of number of queries required until a successful attack (over 1000 target images)
using simBA on the CIFAR10 dataset. The queries axis is limited to 3000 queries for clarity of pre-
sentation. Models using MBSGs (red) require a larger number of queries on average for a successful,
attack as compared to the baseline model (blue).

(a) MBSG, concat (b) MBSG, sum (c) MBSG, dropfeat

(d) Attn-MBSG, concat (e) Attn-MBSG, sum (f) Attn-MBSG, dropfeat

Figure 7: Histogram of number of queries required until a successful attack (over 1000 target images)
using Bandits-TD on the CIFAR10 dataset. The queries axis is limited to 3000 queries for clarity of
presentation. Models using MBSGs (red) require a larger number of queries on average for a successful
attack, as compared to the baseline model (blue).
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3 Connection to Mini-batch Discrimination
Generative Adversarial Networks (GANs), first introduced in [2], are a family of genera-
tive models that are used in several computer vision tasks including high resolution image
generation[11], image super-resolution[7], domain adaptation[5, 12] and image compression
[1]. GANs suffer from the problem of mode collapse, where the generated samples belong
to a few modes in the dataset while still being successful at fooling the discriminator. This
leads to a lack of diversity in the generated samples. One way to mitigate mode collapse
in GANs is to use a technique known as mini-batch discrimination [9]. Here, instead of
the discriminator being required to label individual samples as fake or real, it discriminates
between an entire mini-batch of generated or real samples.

As it turns out, our proposed Attn-MBSG can be interpreted as an extension of mini-
batch discrimination to the classification task. To establish this connection, we present a
variation of our MBSG, which we refer to as a Mode Collapse MBSG (MC-MBSG). Rather
than aggregating node features weighted by attention, as in the case of Attn-MBSG layers,
we aggregate the edge features in this model. Note that these edge features capture similarity
and can be interpreted as the unnormalized attention values.

In MC-MBSG, we modify the discriminator network by extracting features from real/fake
images using the encoder, fθ (·), and denote them by {h1,h2, ...,hB} where hi = fθ (xi) and
B is the batch size. We induce complete graphs for both the batch of generated and real
samples, and process them separately. The output for the n-th aggregated edge feature for
the i-th sample in the mini-batch, which is computed in a manner similar to aggregating
unnormalized attention weights for the n-th head in Attn-MBSG, is given by:

h̄n
i =

B

∑
j=1

φ(ψ(Wnhi,Wnh j)), (1)

where φ(·) is a neural network, Wn is a trainable matrix, and ψ can either be concatenation or
absolute difference. We can then concatenate the aggregated edge features with the indepen-
dent node features and use a final layer to get the i-th scalar output: oi =σ(Wf inal(hi ‖ h̄1

i ‖ ....‖ h̄N
i )).

where σ(·) is the sigmoid function. If we restrict ψ(·) to absolute difference, φ(·) to a fixed
exp(−x) function and take all the h̄n

i as scalars then the model reduces to standard mini-batch
discrimination [9]. This shows how MBSGs are connected to mini-batch discrimination. Our
MC-MBSG model is more expressive than mini-batch discrimination, and can significantly
mitigate mode collapse in GANs, as demonstrated by the experiments in Section 3.1.

3.1 GAN training using MC-MBSG
Lastly, we provide results for training GANs using MC-MBSG, and compare this strategy
with both a vanilla GAN and minibatch discrimination [9]. We test the diversity of our
generated samples using the technique of Number of statistically Different Bins (NDB),
which was proposed in [8] as a metric to quantify mode collapse in GANs. To compute this
metric, we first cluster the training dataset in K different bins and then allocate the generated
images in these bins based on their proximity to the centroid of each bin. Then, we measure
the statistical similarity between the real and fake images in each of the bins and compute
the fraction of statistically different bins that give us the NDB score. In the case of mode
collapse, the number of statically different bins is close to K, and the NDB score is close to
1. Using the NDB score as the metric, in Figure 8, we show that our proposed MC-MBSG

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Wang, Liu, Zhu, Tao, Kautz, and Catanzaro} 2018

Citation
Citation
{Ledig, Theis, Husz{á}r, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz, Wang, etprotect unhbox voidb@x protect penalty @M  {}al.} 2017

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

Citation
Citation
{Zhu, Park, Isola, and Efros} 2017

Citation
Citation
{Agustsson, Tschannen, Mentzer, Timofte, and Gool} 2019

Citation
Citation
{Salimans, Goodfellow, Zaremba, Cheung, Radford, and Chen} 2016

Citation
Citation
{Salimans, Goodfellow, Zaremba, Cheung, Radford, and Chen} 2016

Citation
Citation
{Salimans, Goodfellow, Zaremba, Cheung, Radford, and Chen} 2016

Citation
Citation
{Richardson and Weiss} 2018



MONDAL, JAIN, SIDDIQI: MINI-BATCH SIMILARITY GRAPHS (SUPP.) 9

helps the generator learn faster and generate more diverse samples, which is substantiated
by lower NDB scores. We provide the details of the architecture, experiment setup and
generated images in the Supplementary material.

(a) CelebA (b) CIFAR 10
Figure 8: Plots of NDB scores for 100 bins over the steps, where a step refers to 500 training iterations.
Lower NDB scores imply higher sample diversity. We provide the confidence of the NDB values over
5 runs. We take 160 batches of real training images and 40 batches of fake generated images with a
batch size of 128 to estimate the true statistics of the dataset and reduce the NDB test time.

3.2 Details of the GAN architecture
We use standard generator and discriminator architectures for our GAN model. Let us de-
note the following operations,
Basic convolution: Conv(in_channels,out_channels,
f ilter_size,stride, padding),
Linear layer: Linear(in_dim,out_dim),
Deconvolution: Conv_trans(in_channels,out_channels,
f ilter_size,stride, padding,out put_padding)
The generator architecture using the above notation, is given by
Linear(128,16384)−batch_norm−ReLU
Conv_trans(1024,512,5,2,2,1)−batch_norm−ReLU
Conv_trans(512,256,5,2,2,1)−batch_norm−ReLU
Conv_trans(256,128,5,2,2,1)−batch_norm−ReLU
Conv_trans(128,64,5,2,2,1)−batch_norm−ReLU
Conv_trans(64,3,5,1,2,0)− tanh
The discriminator architecture is given by
Conv(3,64,4,2,1)−batch_norm−LeakyReLU
Conv(64,128,4,2,1)−batch_norm−LeakyReLU
Conv(128,256,4,2,1)−batch_norm−LeakyReLU
Conv(256,512,4,2,1)−batch_norm−LeakyReLU
Linear(8192,1)− sigmoid
This defines the GAN architecture for the CelebA dataset. For CIFAR-10, we slightly mod-
ify the Linear(·) layers to adjust to the reduced image sizes. We add both the minibatch
discrimination and MC-MBSG layers before the final Linear(·) layer of the discriminator.
For the sake of our experiments, we use the Adam optimizer with a learning rate of 10−4 for
the discriminator and 2× 10−4 for the generator, with a batch size of 128. We provide the
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generated images using different discriminator architectures in Figure 9 and 10. We train the
model on CIFAR-10 for 10000 iterations and on CelebA for 7500 iterations.

(a) Minibatch Discrimination (b) Proposed MC-MBSG

Figure 9: Samples generated by the Generator for the CelebA dataset.

(a) Minibatch Discrimination (b) Proposed MC-MBSG

Figure 10: Samples generated by the Generator for the CIFAR-10 dataset.
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