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A Why do α and β meet their own functionalities?
One fundamental question is how we can ensure that α and β respectively focus on the
visible and invisible parts of the source sample. This can be explained by three different
characteristics of these functions:

• α is a coefficient applied on the source sample which is squashed to the range [0,1],
so it can suppress the pixels but does not introduce anything into the image content.

• β is bounded in the range [0,∞). Being greater than zero, it can not suppress nor
reduce the pixel values of the source sample but add some new contents into it.

• α and β are part of the learnable parameters in our generative model, so they learn
through the loss function of the network: L(y,G(x;α,β ). For a loss function, a simpler
solution means a shorter path in the loss space. Keeping the similar pixels of the
source and target samples untouched provides a much simpler solution than making a
fundamental change in all the pixels and then generating them from scratch. For α ,
this exclusively means honing on the visible part of the sample, trying to keep fixed
as much pixel values as possible, while for β it means trying to exclusively draw the
invisible parts of samples, ignoring those pixels that has already been available by the
source sample. Following this shorter path is ensured by a specialized optimizer (like
Adam optimizer in our model).

B Implementation Details
In this section, we briefly review the implementation details of our method (Figure 1). Apart
from the dimensions of the input layer, both the encoders are built upon the same architec-
ture, which is a set of N convolutional layers, each followed by the Batch Normalization
and ReLU activation function. We consider their output to be of the size C×H×W , where
we set C to 256 for Deepfashion and 128 for the Market1501 dataset. For the perceptual
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Figure 1: Overall framework of an Incarnation Block; left: Structure of different functions
in each block, middle: Implementation using Residual Blocks, right: Residual component in
our proposed architecture of Incarnation Blocks

and style losses, we utilize the VGG19, pre-trained on ImageNet database and extract the
embeddings from the Convi; i = 1 : 5 layers. α , β , and f are all constructed based on the
Batch Normalization. As the standard design choice, we consider 9 IC blocks that meet our
demands for a fair trade-off between the accuracy and speed. For the Merging module, we
use three convolutional layers for the first and one layer for the second part of the merging
operation, each followed by the Batch normalization and ReLU activation function. All the
convolutions are performed at the stride 1, therefore the output of this module has the same
spatial dimensions as the input. The structure of the decoder is considered to be symmetric
with the E1, except for the deconvolutional operations.

C Ablation study
In this section, we discuss some alternative configurations of our method to validate the
structure we selected for each part of the network. All the experiments are conducted on
the Deepfashion database. The basic structure of the network is the same as we discussed in
Section 3 of the paper with a modification made just to a specific part.

C.A PG vs PATN
This section aims to examine whether generating patches works in reality and performs better
than the blind combination of the pose and appearances [4]. To do so, we initialize our
method with the transfer blocks of PATN (PATBs) [4] instead of the PG blocks in the original
configuration. For a fair comparison, both the configurations (PG and PATBs) are endowed
with 9 blocks. The comparison results are shown in Table 1. As can be seen, FID score for
the original structure of our method is 10.8 which is about 2 scores better than the alternative
configuration. In fact, using PATBs makes the network to loss some efficiency in keeping the
fidelity of the generated textures which can be allocated to the inference of the blocks in the
task of displacing the patches. This interference and the resulting dependence between the
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modules, makes it unable to correctly interact with the output of the PT module. In addition,
part of this failure can also be allocated to the blind combination of the pose and textures
which comes from the consecutive concatenations of the PATB blocks.

IS↑ SSIM↑ FID↓ LPIPS↓
PATN+PG 3.3892 0.7770 12.18 0.2214
PT+PG 3.4621 0.7767 10.80 0.1991

Table 1: Performance evaluation by replacing PG module with PATNs in the proposed struc-
ture of our method

C.B Contribution of PG
In this section, we study the effectiveness of the PG module in the overall performance of our
network. To do so, we disentangle the PG module from the main configuration and examine
the performance of the resulting network. The results are shown in Table 2. As can be seen,
by ignoring the PG module, we get some degraded results compared to the full version of
our network. This confirms that, PG does really play a positive role in directing the warping
features towards the critical areas of the output sample such as clothing regions.

IS↑ SSIM↑ FID↓ LPIPS↓
Our method without the PG module 3.3125 0.6938 101.48 0.4308
Our method without the PT module 3.4292 0.7668 11.97 0.2107
Full structure 3.4621 0.7767 10.80 0.1991

Table 2: Performance evaluation of our method with ablated PG and PT modules

C.C Contribution of warping features
In this section, we validates the contribution of the warping features in improving the per-
formance of our network. Table 2 compares the results using the full version of the network
and also its counterpart without the warping module. As can be seen, ignoring the warping
features drop the SSIM by 1% which is not a significant number as warping seems to more
contribute in correcting the color tones and fine grained textures. Comparing the results with
Tables 1, it can be seen that the overall performance is much better when PG and PT are
employed together rather than just using one of these modules.

C.D Consistency of normalization
This section aims to validate the effectiveness of the interconsistency in the performance of
our method. For this purpose, we consider two different structures. In the original configu-
ration, we consider a Spectral+Bach normalization scheme for the encoders and decoder of
the network while endowing the others with just Batch Normalization layers. For the second
strategy, all the modules are constructed with the Batch normalization layers. To measure
the concept of consistency, we propose to calculate the l1 distance between the output of the
merging module in the forward mode and output of E1 when utilized in a backward mode,
and refer to it as the consistensy score. This way, we measure the fidelity of the output
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Figure 2: Comparison of the robustness of our method to the sensitivity of the pose estimator

patches to the original textures. With the backward mode, we mean feeding the network
with the target sample instead of the source image. Our experiment shows that the intercon-
sistency can boosts the FID by 0.2 score which is not significant but it still have a significant
role in stabilizing the training process (Table 3).

Full model All in Bach Normalization PATN
Int. Cons. Score 0.4305 0.5708 0.8885

Table 3: Performance evaluation for intraconsistency of our method

C.E Robustness to missing points

We conduct an experiment to examine the robustness of our method to the sensitivity of the
pose estimator. To do so, we first train the network with the complete number of skeletal
points. For inference, we randomly drop out up to K of the keypoints from the target pose
and remeasure the performance. This way, we can determine the sensitivity of our method to
that missing points. For a fair comparison, PATN with 9 blocks is considered as the baseline
method. From the results in Figure 2, we see that FID of our method just drops by about 3.5
scores when dropping up to 4 keypoints from the target sample. This verifies the robustness
of our method against the sensitivity of pose estimator that can be allocated to using heatmaps
as the pose representation rather than drawing raw skeletons. When compared the results
with PATN, despite the fact that both the methods benefit from the heatmaps, our method
shows more robustness (21.74→95.25 for PATN vs. 11.28→73.78 for our method) that
seems to come from our strategy for the disentangled experts on localizing the source and
target samples where even with the failure in one of the experts, there is still another one to
guide the sample towards the correct locations.
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C.F Ablation of the loss function
We also conduct another experiment to evaluate the individual contribution of the loss terms.
Each time a term is ablated from the overall function and then the performance is compared
with the baseline model (the model with all terms of the loss function). The experiment
includes ablating perceptual, adversarial, and content losses. The results are shown in Table
4. As can be seen, adversarial and style losses both reduce the IS and SSIM scores, but has
a significant role on improving the naturalism of image, so that ablating them (especially the
style loss) significantly increases the FID score.

IS↑ SSIM↑ FID↓ LPIPS↓
Our method w/o Lpr 3.4240 0.7707 12.41 0.203
Our method w/o Lst 3.4742 0.7788 13.34 0.208
Our method w/o Ladv 3.4930 0.7787 12.36 0.202
Our method (baseline) 3.4621 0.7767 10.80 0.194

Table 4: Performance evaluation by ablating different terms of the loss function

D Additional qualitative results
Figures 3, and 4 are additional qualitative results of our method.

E How to chose the regularization coefficients
Clearly, setting the regularization weights should be in principle based on an extensive grid
search. But in our case, huge number of network parameters hinders us from doing a real
grid walk on a fair grid of space. As an alternative, we simply set each coefficient so as to
make its corresponding loss term roughly less than 3 (except for the l1 loss which is set to be
less than 1, in order to suppress the blurring effect of this term), e.g. λ1 ∗ l1loss =< 1. Our
experiments demonstrate that there is not much differences between the start value of the
loss functions in comparison with other values, just being in the roughly same range makes
a reasonable choice for the start point of the terms.

F PG vs SPADE
SPADE [2] is a normalization technique proposed to deal with the uniform neural response
of generators in photorealistic image synthesis from semantic layouts. It proposes to make
the fixed de-normalization part of the Batch normalization technique conditioned on an input
semantic map aimed to preserve those parts of semantic information which might wash away
through the affine transformation of the Batch normalization. There are some works that
tried to utilize SPADE in the context of pose generation techniques [1, 3]. However, the
problem is that, each SPADE block needs to take as input the semantic map of the source
sample which is not applicable in a parser-free framework. Unlike SPADE, our method
can progressively estimate pose maps and incorporate them into the next estimation of the
output sample, it does not require any semantic map, and its pose estimation is progressively
performed through conditioning on just an initial key point representation.
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Figure 3: Additional Samples generated by our method, in each triplet the left is the source
sample and the next ones are generated by our method

G Visualization of α and β

Visualizing α and β can provide us with a better understanding about the functionality of
these parameters. It is noteworthy that both α and β are volumetric tensors that their 2D
visualizations will sacrifice the interactive capability of their channels. But just as a very
rough estimation we visualize the averaged value of all the channels. α starts with attending
to the locations of the source sample, but as the sample is modified towards the target shape,
α is also modified to the new locations, such that for the last blocks it seems that α more
attends to the locations of the target sample. Some examples of α f (s) and β are illustrated
in Figure 5. For the first example, we can easily observe that α ∗ f (s) starts by trying to
remove the side view of the arm which is not going to be visible in the target view while
keeping the remaining parts untouched in order to be further modified towards the values of
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Figure 4: Additional Samples generated by our method, in each triplet the left is the source
sample and the next ones are generated by our method

the target sample. In contrast, β always attend to the most critical parts of the target sample
which has not been appropriately reconstructed by the previous estimation of the α value.
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Figure 5: Visualization of α and β for the incarnation blocks of the PG module
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