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In the main paper, we have presented GPRAR, a novel graph convolutional network
based pose reconstruction and action recognition for human trajectory prediction. GPRAR
consists of two novel sub-networks: PRAR (Pose Reconstruction and Action Recognition)
and FA (Feature Aggregator). This material provides additional details of the network pa-
rameters we used in our experiments to achieve the reported results in the paper (Section 3
and 4). We also provide additional pose reconstruction results (Section 5) and trajectory
prediction results with analysis (Section 6). The code will be made publicly available.

1 Details of Tranining Setup

Training Setup. Training is done in two stages: (1) PRAR plays a vital role in our prediction
network; to be impactful, it is crucial to successfully train PRAR for pose reconstruction and
action recognition before (2) customizing it for the prediction task. The details are as follows.
Stage 1: As TITAN and JAAD have limited numbers of complete human skeletons, we first
train PRAR on Kinetics dataset [? ] to obtain the initial network weights. Kinetics is a large
human skeleton dataset, which contains around 300,000 video clips with 400 human action
classes of various daily activities. Once PRAR is successfully trained on Kinetics dataset, we
continue training the pre-trained PRAR on TITAN and JAAD datasets. The trained PRAR
model on TITAN and JAAD datasets (obtained from the last training epoch) is used in the
next training stage.

Stage 2: We customize the pre-trained PRAR to the trajectory prediction task on JAAD [?
] and TITAN [? ] datasets. Specifically, we attach FA module on top of PRAR and train
the entire prediction model using the loss function in Equation ??. Our training setup is
considered an adaptive learning approach as opposed to the non-adaptive learning where the
input features to the predictor (i.e., FA in our work) are fixed. We show the effectiveness of
this learning approach in the ablation study.

In both stages, our model is trained using stochastic gradient descent [? ] with a learning
rate of 0.01 and 50 epochs. We decay the learning rate by 0.1 after every 10 epochs. To im-
plement spatial-temporal graph convolutions, we use similar implementation steps discussed
in [? ]. Our network model is implemented using PyTorch [? ].
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2 Pose Reconstruction and Action Recognition Results.

We found that pre-training PRAR on Kinetics dataset (in stage 1) significantly improves
the pose reconstruction losses for both TITAN and JAAD datasets as depicted in Figure ??.
Interestingly, by using the pre-trained network weights, pose reconstruction losses are signif-
icantly decreased (better) by 64% and 78% on TITAN and JAAD respectively in comparison
with using random weights.

Figure ?? shows an example qualitative result of PRAR on JAAD validation data. We
observe that PRAR is capable of reconstructing the missing human joints (e.g., missing head
and legs in this figure). Quantitatively, we achieve pose reconstruction error of about 5 pixels
and 10 pixels on TITAN and JAAD datasets given the image dimensions 1080 x 1080 pixels.

For the action recognition task, PRAR achieved 99% accuracy on JAAD with two action
classes, and 91.05% on TITAN with eight action classes. We consider these to be desirable
accuracies for skeleton-based action recognition.

3 Network Architecture of Pose Recognition and Action
Recognition (PRAR).

PRAR consists of three main components: a pose encoder, a pose reconstruction decoder,
and an action recognition decoder; each consists of multiple layers of spatial-temporal pose
graph convolutional network (st-pgcn), as shown in Table 1. Each layer performs the spatial-
temporal convolution (i.e., Equation 1 in the main paper) to estimate new values of each
human joint. An important parameter of this convolution is the size of neighbor set B(-), the
number of nearby spatiotemporally connected nodes. Similar to [? ], we control the size of
the neighbor set B(-) using a kernel with shape [T, S], where 7 and S are the temporal and
spatial sizes, respectively. To be specific, we use 3 layers for the encoder and 4 layers for
each decoder. Each layer has temporal size of 9 and spatial size of 3. These numbers are
selected based on our empirical study that yields the best saturated results reported in the
paper.

The sequence of noisy observed human skeletons is denoted as K (’;bs with shape [B,C, T s, K] =
[1,3,10, 18], where B, C, T, K are batch size, channel size, observed time, and number of
human joints, respectively. We first normalize K(’;hs using BatchNorm1d layer [? ]. The
output of BatchNorm1d is forwarded to the pose encoder to learn an encoded pose feature
for both pose reconstruction and action recognition tasks. Specifically, the pose encoder
increases the channel size of the input pose feature (i.e., 3 — 64 — 128 — 256), while we
decrease the channel sizes of the encoded feature in both decoder branches. At the last layer
of action recognition decoder, we use a fully connected network (fcn) to convert the output
pose feature of layer reg.st-pgen4 to the appropriate size (i.e. [1,V]) for action prediction.
During the adaptive training process, this layer is customized to support a different number
of action classes for each dataset (e.g., 400 action classes for Kinetics, 9 action classes for
TITAN, and 2 action classes for JAAD).

4 Network Architecture of Feature Aggregator.

Table 2 shows the network architecture of Feature Aggregator, which consists of four fea-
ture encoders and a decoder. Each encoder encodes an input feature (i.e., reconstructed pose,
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Layer Type Kernel Shape  Output Shape

[T, S] [B, C7 T()hs> ’C]
Input K(’;bs - [1, 3,10, 18]
BatchNorm1d - [1, 3,10, 18]
Pose Encoder
enc.st-pgenl [9,3] [1, 64, 10, 18]
enc.st-pgen2 [9,3] [1, 128, 10, 18]
enc.st-pgen3 [9,3] [1, 256, 10, 18]
Pose Reconstruction Decoder
rec.st-pgenl [9,3] [1, 256, 10, 18]
rec.st-pgcn2 [9,3] [1, 64, 10, 18]
rec.st-pgen3 [9,3] [1,32, 10, 18]
rec.st-pgenéd [9,3] [1, 3,10, 18]
Action Recognition Decoder
reg.st-pgenl [9,3] [1, 256, 10, 18]
reg.st-pgen?2 [9,3] [1, 64, 10, 18]
reg.st-pgen3 [9,3] [1, 32,10, 18]
reg.st-pgenéd [9,3] [1, 3,10, 18]
reg.fcn (3, V1] [1, N]

Table 1: PRAR N —F —5- ial kernel size. B:
batch size, C: channel size, T,,: observed time, K: number of human joints. A/: number of
action classes.

location, action, and camera motion) using multiple layers of one-dimensional temporal con-
volution (conv1d), rectifier linear unit (ReLU) [? ], and batch normalization (BN) [? ]. Next,
the encoded features are channel-wise concatenated in the intermediate layer, which is used
as an input to the decoder to produce the future trajectory.

5 Additional Trajectory Prediction Results

We present additional pose reconstruction results (Figure 1) in various extreme scenarios
where a pose detector fails to detect, but PRAR successfully reconstructs. These scenarios
include: a pedestrian occluded by another pedestrian (row 1) or by another object (rows 2 and
3); a small-scale pedestrian, who is far from the camera (row 4). We also show a failure case
of PRAR, where the pedestrian is too far from the camera (last row). In this scenario, since
the scale of this pedestrian is too small and the structure of skeleton is not maintained (i.e.,
the detected human joints are too close with each other), PRAR fails to utilize the structural
information of human skeletons to reconstruct the pose.

6 Additional Pose Reconstruction Results

In this section, we first analyze the prediction performance of GPRAR with varying fu-
ture prediction time (Section 6.1) and present additional qualitative prediction results (Sec-
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tion 6.2).

6.1 Results with varying future prediction time.

We illustrate the prediction for future prediction steps by varying 7},.s on JAAD dataset
in Table 3. Given the observed time T,,; = 10 frames, we report the prediction errors
(ADE/FDE in pixels) under noisy observations in different timesteps 7)., ranging from
10 frames to 30 frames. For interpretability, 30 frames correspond to 3 seconds into future
considering the frame per second (fps) is 10. We make comparisons with FPL method, which
is closely related to our model. In general, the prediction errors of both methods increase
when the prediction time increases. However, GPRAR still outperforms FPL significantly
in all prediction steps. Especially, GPRAR shows prediction accuracy improvement by 16%
relative to FPL at 7.4 = 30.

6.2 Additional qualitative prediction results.

We present additional prediction results of GPRAR in different scenarios of noisy poses
(Figure 2). With the success of PRAR in reconstructing these noisy poses, our prediction
results (yellow) are very close to the ground truth trajectories (red). We show a failure case
of GPRAR (Figure 2, last row), where a small-scale pedestrian detected, PRAR fails to
completely reconstruct the human pose (corresponding to Figure 1 last row), thus leading to
the failure of GPRAR.

We also provide additional prediction results for various human actions, as shown in
Figure 3. We observe that GPRAR has successfully considered different action types into
trajectory prediction. For example, a ‘running’ pedestrian (row 4, left image) moves faster
(i.e. longer predicted trajectory) than “sitting”, “bending”, or “standing” pedestrians. We
note that the pedestrians’ actions and movements must be considered relative to the camera
motion. For example, a “sitting’ pedestrian may have large motions (row 2, right image)
when the camera moves fast. This camera motion has also been considered and incorporated
in GPRAR.
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Kernel Shape Output Shape
Layer Type
¥ P [T, S] [B,C7 Tobsa ’C]
Pose Encoder
convld + ReLU + BN 3 [1, 54,10, 1]
convld + ReLU + BN 3 [1, 32,10, 1]
convld + ReLU + BN 3 [1, 64,10, 1]
convld + ReLU + BN 3 [1, 128,10, 1]
Location Encoder
convld + ReLU + BN 3 [1,2,10, 1]
convld + ReLU + BN 3 [1, 32,10, 1]
convld + ReLU + BN 3 [1,64,10,1]
convld + ReLU + BN 3 [1,128, 10, 1]
Action Encoder
convld + ReLU + BN 3 [1, 54,10, 1]
convld + ReLU + BN 3 [1, 32,10, 1]
convld + ReLU + BN 3 [1,64,10,1]
convld + ReLU + BN 3 [1, 128, 10, 1]
Camera Motion Encoder
convld + ReLU + BN 3 [1,24,10,1]
convld + ReLU + BN 3 [1,32,10,1]
convld + ReLU + BN 3 [1, 64,10, 1]
convld + ReLU + BN 3 [1, 128,10, 1]
Intermediate Layer
Concatenation - [1,128 x 4,10, 1]
convld + ReLU + BN 1 [1, 128, 10, 1]
Camera Motion Encoder
deconvld + ReLU + BN 3 [1, 128,10, 1]
deconvld + ReLU + BN 3 [1, 64,10, 1]
deconvld + ReLU + BN 3 [1, 32,10, 1]
deconvld + ReLU + BN 1 [1,2,10, 1]
Fable 2-FANetwork Detaits
Tyrea \ 10 14 18 22 26 30
FPL 26.24/27.83 23.22/28.16 49.66/51.35 46.50/54.97 44.06/55.25 36.08/4S
GPRAR | 18.62/21.26  22.57/27.52 27.90/34.50  25.09/34.98  31.22/41.35  30.82/4%
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(b) (c)

Figure 1: Additional Pose Reconstruction Results. (a) Original frame with a target pedestrian
inside the bounding box, (b) noisy pose detection, (c) our reconstruction result, and (d)
ground truth pose. A failure case is shown in the last row.
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Figure 2: Additional qualitative results of our model (GPRAR) 1n different noisy human
poses. A failure case is shown in the last row.
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Figure 3: Additional qualitative results of our model (GPRAR) 1n dlfferent human actions.



