
Y SUN, A KOLAGUNDA, S ELIUK, X WANG: UNCERTAINTY MINING NET 1

Supplementary: Training Better Deep Neural
Networks with Uncertainty Mining Net

Yang Sun ‡2

ys2899@columbia.edu

Abhishek Kolagunda1

abhishek.kolagunda@ibm.com

Steven Eliuk1

steven.eliuk@ibm.com

Xiaolong Wang1

visionxiaolong@gmail.com

1 IBM
California, US

2 ByteDance Ltd.
Beijing, China

1 Algorithm of UMN

Algorithm 1: UMN Algorithm

while Traning() do
Sample a minibatch Si from dataset;
Draw zi

a from qφ (zi
a|xi) given xi ∈ Si;

for all data xi ∈ Si: do
yi ∼ qφ (yi|zi

a)
end
for all labeled data xi

L ∈ Si: do
Compute ŷi ∼ pθ (ŷi|y,zi

a) based on ε , the uncertainty estimated as the
difference between predictions of Learner and Guider

end
Compute the remaining outputs of the generative process;
Compute the loss L Eq.(21) ;
gθ = ∂L

∂θ
; gφ = ∂L

∂φ
;

θ = θ - AdamUpdate(θ); φ = φ - AdamUpdate(φ);
For φ in classifier yi ∼ qφ (yi|xi), update its moving average, the guider as
φG(t) = α ∗φG(t−1)+(1−α)∗φL(t)

end

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

‡The author contributed to this work while employed in IBM, California, USA.

2 Y SUN, A KOLAGUNDA, S ELIUK, X WANG: UNCERTAINTY MINING NET

Input (32, 32, 3)

Pool 2d (2, 2)

Conv2D (64, 3,3) X 3

Conv2D (128, 3,3) X 3

Pool 2d (2, 2)

Conv 2D X 3 (3,3,128)
(Z1)

Conv 2D X 3,
(3, 3, 32)

Flatten

(16, 16, 64)

(1152)

Dense (Z2)

Dense

(1152)

Reshape

(6, 6, 128)

Conv_T 2D X 3 (3, 3, 128)
(Z1)

Upsampling

Conv 2D X 3 (128, 3,3)

Upsampling

Conv 2D X 3 (64, 32, 32)

Reconstructed Input
(32, 32, 3)

(16, 16, 128)

(32, 32, 64)

(8, 8, 128)

(8, 8, 128)

(256)
(8, 8, 128)

(16, 16, 128)

(16, 16, 128)

(32, 32, 128)

(32, 32, 128)

(32, 32, 3)

AVG Pooling (6,6)

FCC

Softmax

MVAE

classifier

(6, 6, 128)

Conv 2D X 3 (1, 1,128)

Conv 2D X 3 (1, 1,128)

(8, 8, 128)

Dense (Z2)

Figure 1: The network architecture used in UMN framework. It is used in experiments on
SVHN and CIFAR10 datasets. The network includes two modules. The first one is the
classifier which is composed of convolution, pooling, dense and softmax layers. The second
module is M1+M2 stacked variational autoencoder. Z1 and Z2 are the latent representation
of M1 and M2 respectively. We use Z1 denote the output of the encoder from M1. It is used
as the input to the classifier.

2 Model Architecture of UMN with Convolutional Neural
Network

Details of the model architecture is listed in Table. 1. In addition, Figure. 1 demonstrates how
the classifier and VAE models are setup. The VAE is a stacked autoencoder with M1+M2
[2]. M1 is a variational autoencoder built with convolution neural networks. M2 is composed
of only fully connected layers.

3 Uncertainty Estimation as Difference between the
Guider and the Learner

We discuss the uncertainty estimation for a model near convergence in a convex domain [3].
Assumption 1 We assume that in the optimization problem, the stationary distribution is

constrained to a convex region, where the loss function has a quadratic form:

L=
1
2

θ
>Hθ , (1)

where H is the Hessian of the loss surface near minimum and the vector θ of the model
parameters. Without loss of generality, optimal θ lies on the origin.

Citation
Citation
{Kingma, Rezende, Mohamed, and Welling} 2014

Citation
Citation
{Mandt, Hoffman, and Blei} 2017

Y SUN, A KOLAGUNDA, S ELIUK, X WANG: UNCERTAINTY MINING NET 3

Table 1: Configuration of the neural networks
Layers of Classifier Hyperparameters
Input 32 × 32 RGB
Translation (shared with MVAE) Randomly [δx,δy]∼ [−2,2]
Gaussian noise (shared with MVAE) σ = 0.15
Conv2D (shared with MVAE) filter size: (3, 3, 128), same padding
Conv2D (shared with MVAE) filter size: (3, 3, 128), same padding
Conv2D (shared with MVAE) filter size: (3, 3, 128), same padding
Pooling (shared with MVAE) MaxPool, (2, 2)
Dropout(shared with MVAE) p = 0.5
Conv2D (shared with MVAE) filter size: (3, 3, 128), same padding
Conv2D (shared with MVAE) filter size: (3, 3, 128), same padding
Conv2D (shared with MVAE) filter size: (3, 3, 128), same padding
Pooling (shared with MVAE) MaxPool, (2, 2)
Dropout (shared with MVAE) p = 0.5
Conv2D (shared with MVAE) filter size: (3, 3, 512), valid padding
Conv2D filter size: (1, 1, 256), valid padding
Conv2D filter size: (1, 1, 128), valid padding
Pooling AvgPool, (6,6)
Fully Connected + Softmax 128→ 10
Layers of UMN Hyperparameters
Conv2D filter size: (3, 3, 32), same padding
Flatten (8,8,32)→ 1152
Fully Connected 1152→ 256
Fully Connected 256→ 1152
Reshape 1152→ (6,6,32)
Conv2D Transpose (6,6,32)→ (8,8,128)
Up-sampling
Conv2D filter size: (3, 3, 128), same padding
Conv2D filter size: (3, 3, 128), same padding
Conv2D filter size: (3, 3, 128), same padding
Up-sampling
Conv2D (shared with MVAE) filter size: (3, 3, 128), same padding
Conv2D (shared with MVAE) filter size: (3, 3, 128), same padding
Conv2D (shared with MVAE) filter size: (3, 3, 128), same padding

4 Y SUN, A KOLAGUNDA, S ELIUK, X WANG: UNCERTAINTY MINING NET

3.1 The Convergence Behavior as Stochastic Process
The convergence behavior of Stochastic Gradient Descent (SGD) can be described by a
stochastic differential equation as

dθ =−λg(θ)dt +
λ√
S

B(θ)dW(t), (2)

where g(θ)dt ≡ Hθ(t) is the gradient for the weights and S is the mini-batch size. dW(t)
represents the Wienner process in the stochastic gradient descent. B(θ) is introduced due
to the noise in the stochastic gradient descent process. The covariance of the SGD process
Σ = E(θθ>) satisfies HΣ+ΣH = λ

S BB>. λ and t represent the step size and step index
respectively.

Lemma 1 The stochastic process for parameter optimization of deep learning problem us-
ing only piecewise linear activation function with and without noisy labels can be described
by the following Wienner processes,

dθ(t) =−λĤθ(t)dt +
λ√
S

B̂(θ)dW(t); (3)

dθ(t) =−λHθ(t)dt +
λ√
S

B(θ)dW(t), (4)

whereH= Ĥ and B = B̂, assuming the learning rate and batch size are the same.

The proof follows directly from a theorem (Theorem 4) from [4], stating that the cur-
vature of the loss surface (Hessian) is invariant with respect to the noise when the neural
network only uses piecewise linear function for its activation functions.

3.2 Polyak’s Average for the Weights Optimization
Polyak et al. [5] proved that the iterate average gives the optimal convergence rate and
approximates the optimal by using the average of the iterates online as

θL(t +1) = θL(t)−λgL(θt);

µt+1 =
t

t +1
µt +

1
t +1

θt (5)

and the iterate average after T step is

θG(T) = µT ≡
1
T

∫ T

0
θL(t)dt, (6)

where θL and θG indicate the weights of the leaner and guider respectively.

Theorem 1 Suppose that θ ∗ is the optimal solution of the optimization problem. θL is the
stochastic random variable for SGD (learner) and θG is iterate average (guider) of θL,
θG(T) = µT ≡ 1

T
∫ T

0 θL(t)dt. The distance between θL and θ ∗ is consistent with the dis-
tance between θL and θG in the sense that

E

[(∂

∂θL

[
‖θL−θ

∗‖2])>(θG−θL)
]]

> 0 (7)

Citation
Citation
{Patrini, Rozza, Krishnaprotect unhbox voidb@x protect penalty @M {}Menon, Nock, and Qu} 2017

Citation
Citation
{Polyak and Juditsky} 1992

Y SUN, A KOLAGUNDA, S ELIUK, X WANG: UNCERTAINTY MINING NET 5

which holds when the training epoch T satisfies the following relation

T <
1
λ

Tr{H−1Σ}
Tr{Σ}

, (8)

where λ is the constant learning rate.

We prove that the theorem holds in the presence of the noisy labels. Assuming the in-
variance of the Hessian (Lemma 1), the distance between the learner and the guider suggests
the correctness of the labels.

Starting with

E
[(

∇θL

[
‖θL−θ

∗‖2])>(
θG−θL

)]
=2E

[
(θ>L −θ

∗)>(θG−θL)
]

≈E[θ>L θG]−E[θ>L θL]−θ
∗>

θ̂
∗+θ

∗>
θ̂
∗

=E[θ>L θG]−E[θ>L θL] (9)

to prove the theorem, we need to show that

E[θ>L θL]< E[θ>L θG] (10)

holds when Eq 8 is true. We denote

θL = θ̄S + θ̂
∗; θG = θ̄T + θ̂

∗

These are two stochastic optimization processes described above for the stochastic gradient
descent and the iterate average. θ̄S and θ̄T can be seen as the deviation from the optimal
point. Hence we now need to show

E[θ̄>S θ̄S]< E[θ̄>S θ̄T] (11)

holds when Eq. 8 is true. The left hand side of Eq. 11 gives

E[θ̄>S θ̄S] = Tr(Σ) (12)

In order to evaluate the right hand side of the equation, we recall the Green’s function for the
Ornstein-Uhlenbeck process,

E(θ(t)θ>(s)) =
{

Σe−λH(s−t), if t < s
Σe−λH(t−s)Σ, if t ≥ s

(13)

Then, the right hand side of Eq. 11 becomes:

E[θ̄>S θ̄T] = Tr
[1

T

∫ T

0
E[θ̄>S (t)θ̄S(t ′)]dt ′

]
= Tr

[1
T

∫ T

0
e−λH(t−t ′)

Σdt ′
]

= Tr
[1

T
UΛ

−1(I− e−λT Λ)UT
Σ

]
≈ Tr

[1
λT
H−1

Σ

]
(14)

6 Y SUN, A KOLAGUNDA, S ELIUK, X WANG: UNCERTAINTY MINING NET

where we assume that the Hessian is full rank and its inverse has an eigen decomposition

H−1 =UΛ
−1UT (15)

From Eq. 12 and Eq. 14, when

T <
1
λ

Tr{H−1Σ}
Tr{Σ}

(16)

the Eq. 7 holds.
If we make an assumption as in [1], i.e., the covariance of the local minimal is approximated
by the Hessian, namely,H= Σ. We observe that the last equation in the proof above becomes

T <
1
λ

Tr{H−1Σ}
Tr{Σ}

=
1

λL
, (17)

where L is the Laplacian.
From the theorem, the Learner model (θL) is closer to the optimal than the Guider model

(θG) during the early part of training (Eq. 8). During the later stages of training, θL oscillates
about θG which is converging to the optimal (θ ∗). That is E

[
θL
]
= θG and θG ≈ θ ∗. Given

that the minima of the loss for the set of clean samples (Xclean) are more tightly clustered
than that of the set of noisily labeled samples (Xcorrupt), we can say that θG converges closer
to the center of the minima of the set of clean samples (θ ∗clean) than that of the set of corrupt
samples (θ ∗corrupt) when training on the dataset Xclean∪Xcorrupt . Which indicates that in most
cases the magnitude of the gradient of the loss for a sample with respect to Guider model
is larger for noisily labeled samples than that of clean samples. That is |∇θGLcorrupt | >
|∇θGLclean|. Then, for a given sample x, the absolute difference ε between the predictions
of the Learner and Guider can be an approximation of the gradient norm of the loss. That
is ε(x) ∼ |∇θGLx|. Larger the difference higher the likelihood of the label being corrupted.
This is different from filtering out noisy labeled samples by applying a threshold on the
confidence of the predictions, which does not take into account that the minima of some
noisily labeled samples might be lower than that of the clean samples. Our approach builds
an outlier rejection mechanism into the training process based on the gradient norm of the
loss.

4 ELBO for VAE of Uncertainty Minining Net (UMN)
Let’s start from the Jensen’s inequality for the log probability of the observations,

logP(X)≥ Eq(z|x) logP(X |Z)−q(z|X)p(z) (18)

where the observed variables are X = {ŷ,X} and z is the latent variable in the VAE struc-
ture which we use in the stacked semi-supervised learning architecture. The posterior and
likelihood can be factorized as

q(za,zb,y|x, ŷ) = q(za|x)q(y|za)q(zb|za,y)

p(x, ŷ|za,zb,y) = p(x|za) p(ŷ|y,za).

Citation
Citation
{Jastrzebski, Kenton, Arpit, Ballas, Fischer, Bengio, and Storkey} 2017

Y SUN, A KOLAGUNDA, S ELIUK, X WANG: UNCERTAINTY MINING NET 7

The reconstruction loss on r.h.s of Eq. 18 then gives

∑
y∈C

Eqθ (za|x)pφ (y|za)
[

logP(x|za)+ logP(ŷ|za,y)
]

= Eqφ (za|x) logP(x|za)+Eqφ (za|x) ∑
yk∈C

qφ (yk|za) logPθ (ŷ|za,yk)

= Eqφ (za|x) logP(x|za)+Eqφ (za|x) ∑
yk∈C

qφ (yk|za) logPθ (ŷ|yk,za), (19)

where qφ and pθ represent the encoder and decoder respectively in the variational autoen-
coder. These functions are modeled using deep neural networks. Note that the second term
in Eq. 19 is summed over labeled samples in semi-supervised learning. The KL divergence
in Eq. 18 can be represented as

−q(za,zb,y|X , ŷ)p(za,zb,y)

= ∑
y∈C

pθ (y|za)Eqφ (za|x) Eqφ (zb|za,y)

[
logqφ (za|x)+ logqφ (y|za)+ logqφ (zb|za,y)

− log p(za|zb,y)− log p(zb)− log p(y)
]

= −Eqφ (za|x) ∑
y∈C

qφ (y|za)
(
q(zb|za,y)p(zb)

)
−Eqφ (za|x) ∑

y∈C
qφ (y|za)

(
qφ (y|za)p(y)

)
−Eqφ (za|x) ∑

y∈C
qφ (y|za)Eqφ (zb|za,y)

(
log pθ (za|zb,y)− logqφ (za|x)

)
. (20)

To summarize, the ELBO for VAE in UMN can be calculated as

−Eqφ (za|x) ∑
y∈C

qφ (y|za)
(
q(zb|za,y)p(zb)

)
−Eqφ (za|x) ∑

y∈C
qφ (y|za)

(
qφ (y|za)p(y)

)
−Eqφ (za|x) ∑

y∈C
qφ (y|za)Eqφ (zb|za,y)

(
log pθ (za|zb,y)− logqφ (za|x)

)
+Eqφ (za|x) logP(x|za)+Eqφ (za|x) ∑

yk∈C
qφ (yk|za) logPθ (ŷ|yk,za), (21)

where in the last term, estimations for probabilities of the observed label is calculated via the
true labels and the corresponding encoded sample za. The loss given by ELBO is calculated
by summing over all samples except the last term which is summed over the samples that
have the available observed variable ŷ (labeled samples).

5 Evolution of uncertainty estimate during training
Fig. 2 shows the progression of the uncertainty estimate ε while training on CIFAR-10
dataset with a label corruption rate of 20%. We can see that the distribution is bimodal (has 2

8 Y SUN, A KOLAGUNDA, S ELIUK, X WANG: UNCERTAINTY MINING NET

Epsilon

0.00
0.33

0.66
0.99

Epoch

0

50

100

150

Nu
m

be
r o

f l
ab

el
ed

 d
at

a

0

100

200

300

Figure 2: ε calculated at different epochs for corruption ratio = 0.2 on CIFAR-10 dataset.
The plot shows the histogram of ε distribution for different training epochs.

peaks) and that the bimodal separation increases as the training progresses. i.e., our approach
becomes more confident in differentiating samples with corrupt labels from samples with
correct labels.

References
[1] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer,

Yoshua Bengio, and Amos J. Storkey. Three factors influencing minima in SGD. CoRR,
abs/1711.04623, 2017. URL http://arxiv.org/abs/1711.04623.

[2] Diederik P. Kingma, Danilo Jimenez Rezende, Shakir Mohamed, and Max Welling.
Semi-supervised learning with deep generative models. CoRR, abs/1406.5298, 2014.
URL http://arxiv.org/abs/1406.5298.

[3] Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradient descent
as approximate bayesian inference. Journal of Machine Learning Research, 18:134:1–
134:35, 2017. URL http://jmlr.org/papers/v18/17-214.html.

[4] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen
Qu. Making deep neural networks robust to label noise: A loss correction approach. In
CVPR, July 2017.

[5] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.

http://arxiv.org/abs/1711.04623
http://arxiv.org/abs/1406.5298
http://jmlr.org/papers/v18/17-214.html

Y SUN, A KOLAGUNDA, S ELIUK, X WANG: UNCERTAINTY MINING NET 9

SIAM J. Control Optim., 30(4):838–855, July 1992. ISSN 0363-0129. doi: 10.1137/
0330046. URL http://dx.doi.org/10.1137/0330046.

http://dx.doi.org/10.1137/0330046

